
Small Group Software Development: A Case Study
Rob Jansen

University of South Carolina
University of Minnesota, Morris

[phone number]

jans0184@morris.umn.edu

ABSTRACT
The development process that a group uses to design software is
important for determining the success of a project. Although
considerable research discusses processes best suited for large
companies, this paper presents a case study of software
development by a small group and considers the process taken
towards the completion of a project. The collaborative
undergraduate team project analyzed included the design and
development of a cell phone game using the programming
language Java 2 Micro Edition. Many development processes
exist, such as the waterfall model, the spiral model, the unified
process, and extreme programming. These were compared with
the process the team used. The analysis suggests the process was
too detailed for a small group environment. In this situation, it
was found that less time should have been spent on design. My
research shows the need for a simplified method usable by small
groups that allows adaptation to changes and takes advantage of
the close communication environment of the group.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
software libraries.

General Terms
Design, Experimentation, Languages.

Keywords
Software, design, development, engineering, small, group,
methodologies.

1. INTRODUCTION
When discussing software development as a research opportunity,
small groups are often overlooked. Most often the topic is
software development for large corporations, with a goal to create
an efficient method of development for the specific company.
Large companies seem to be most concerned with their bottom
line, so they look for methods that are efficient and satisfy their
financial concerns. Small group software development is
important and needs to be considered as well. This kind of
development exists both in the engineering industry and in the
world of academia. My goal is to analyze a method that is used by
small groups at the University of South Carolina. I will analyze
the method by participating in a small group project as part of my
research. I will compare the process my group used to other well
known general development methods while stating the strengths

and weaknesses based on my experiences. My research will
provide insight for professors wanting to find a development
process that works for small groups. It will also be a resource for
students wanting to look into which processes have worked for
other students, what hasn’t worked, and which processes are
recommended. Students will be particularly interested because
they might find themselves in similar situations. It can give them
an idea of what happens during the development process and what
to focus on while they are developing software applications.

2. RELATED WORK
As mentioned earlier, there is much more research done in the
area of large group software development than small group. In a
simple search on Google scholar, the term “small software
development” returns 365 results, while the term “large software
development” returns 1,160 results. However, this isn’t to say that
small development research does not exist. For instance, Mark
Paulk discusses what small means in terms of a “small” project in
his paper “Using the Software CMM in Small Organizations” [4].
There has also been comparisons made on small group and large
group development projects in an academic setting as discussed
by Michael Stein in his paper “Using Large VS Small Group
Projects in Capstone and Software Engineering Courses” [3].
Specific engineering methods have been produced for small
companies as well. In their paper “Wisdom: A Software
Engineering Method for Small Software Development
Companies” [5], Nuno Nunes and Joao Cunha present a method
that addresses the needs of small software development teams.
Their method emphasizes small teams’ communication, speed,
and flexibility.

3. DEVELOPMENT MODELS
The development process that a group uses to design software is
important for determining the success of a project. There are
many well know processes along with some less known methods.
Here I will provide you with some background information on
four general processes that exist. These processes are general
enough to cover the ideas found in most existing processes. The
models consist of 5 phases that form a general framework for
development [1]: communication, planning, modeling,
construction, deployment. During the communication phase, the
project gets initiated and requirements are gathered so the team
knows exactly what needs to be done for the completed
application. In the planning phase, the team estimates the amount
of time it will take to complete the project. After estimations are
made, the team develops some kind of plan for completing all the
work. This plan could include, among other things, dividing up

work between employees and setting deadlines. The team might
also set up a tracking system that will be used to store and share
code between employees. This will ensure that the code is
accessible to everyone and can be updated safely. During the
modeling phase the team analyzes the requirements that were
discussed during the communication phase. Based on the
requirements, the team begins designing the system. Design
includes user interface design, UML models used by the
company, and system design. During the construction phase, the
coding takes place. The interfaces and classes are constructed and
tested in code. The design that took place during the modeling
phase is followed. The last phase, deployment, represents an
ongoing phase. During this phase, the final program is delivered
to the customer. Support and feedback are offered as an ongoing
part of creating the software. After all, who knows the program
better than the designers!?

3.1 The Waterfall Model
The waterfall model is the oldest paradigm for software
development [1]. The waterfall model represents a linear,
systematic approach to software development, as represented in
figure 1 above. The phases of the waterfall model include the
general phases described above. The main idea behind the
waterfall model is to follow the process in a logical order. By
following each phase of the "waterfall", you theoretically finish
the project after you complete construction. However, ongoing
support for the product continues long after construction is
complete.

This model is particularly useful when the requirements of the
project are well understood and are very stable. However, this is
almost never the case in real projects. Most software projects
evolve as the customer makes decisions about the program. Since
the process takes a while to complete, a change in plans near the
end of the process could be disastrous. Many times the customer

does not know exactly what the requirements are, forcing the
team to make their best decisions on what would satisfy the
customer. Also, a product will not be available until near the end
of the process. This could make customers impatient and it could
be difficult to decide if they like the program or not until it is
finished. This does not give them much flexibility to change their
mind about the way things look without spending more money on
the project by expanding it. Another problem with the waterfall
model is the possibility for blocking states to occur. A blocking
state is when a part of development is held back because it
depends on another part that isn’t finished yet. Often, the time
spent waiting on other parts to finish exceeds productive time.
This method is thought to be an "old" style, but is still applicable
in some current day projects.

3.2 The Spiral Model
The spiral model uses the systematic method of the waterfall
model, but does so in such a way as to implement an iterative
approach. Each iteration represents a pass around the spiral.
Although the spiral model uses the same general framework ideas
discussed earlier, it helps reduce risk and uncertainty by
developing an early prototype. As the project proceeds through
iterations, the prototype is developed into more complete versions
of the actual program. This helps keep the customer in tune with
the current state of the project. It also allows the team to get early
feedback from the customer so a more desirable program can be
produced as a final product. Each pass through the planning stage
allows the team to adjust its schedule and the estimated cost. The
spiral model can be applied to the project at any point in its
development. If an enhancement is planned for a completed
program, the spiral model can be reapplied using an entry point in
the correct phase.

The ability to handle evolutionary projects is an advantage the
spiral model hold over the waterfall model. However, the spiral
model has its problems too. There is a possibility that customers
will not believe the evolutionary approach to software
development is controllable. This process also requires that risks
are uncovered and addressed with expertise. As with the waterfall
model, if a problem is not uncovered early, the results could be
disastrous to the project.

3.3 The Unified Process
The unified process is an attempt to create a software
development process that unites aspects of early prescriptive
models with principles of agile programming. The unified process
consists of four phases: inception, elaboration, construction, and
transition. To tie these phases with the generic framework
discussed earlier, the inception phase consists of communication
and initial planning. The elaboration phase consists of the major
planning and design. The construction phase is as described
earlier, and the transition phase includes testing and product
deployment. The product deployment represents a software
increment. After deployment, the team continues with the project,
working towards completion of the next increment.
Communication and planning with the customer, as well as
feedback from end-users will allow the team to make changes to
the program during development. The unified process uses
Unified Modeling Language (UML) design models during design
and development. Simply put, UML is a set of terms and mapping

Figure 1- The phases of the Waterfall Model.

standards that make it easy to visualize system requirements,
flow, and functionality. It helps create an abstract model of the
software system that the entire team will understand. The unified
process makes use of production time by conducting several
phases of development in concurrency.

3.4 An Agile Process: Extreme Programming
3.4.1 Agile Process
An “agile” software process is created addressing three main
assumptions:

1. It is difficult to predict in advance which initial software
requirements that have been identified will change and
which will not. It is also difficult to predict how the
customer’s priorities will change as the project
progresses.

2. It is hard to know how much design to do before staring
with construction. Design is important to gain an
understanding of the program, but construction is
important to test the design.

3. It is hard to plan the scheduling, planning, design,
construction, and deployment phases and how they will
carry out as the project progresses.

Basically there is much uncertainty in software development.
Agile processes try to address this by providing adaptability to an
ever-changing project, program, etc. If a software team is to
succeed, it must possess competence, must have a common focus,
must collaborate with each other, must have decision making
ability, must have a fuzzy problem solving skill, must have
mutual respect and trust each other, and must be self organized.

3.4.2 Extreme Programming
Extreme programming consists of activities that form four phases:
planning, design, coding, and testing.

During the planning phase, the customer creates user stories for
the development team. User stories are similar to use cases in that
they describe the functions and features that the program should
include in the finished product. The customer breaks up
functionality into small parts and writes each "story" on an index
card. Then the customer assigns a value, or priority, to each index
card. This value is dependent on the business value or priority of
the specific function. After the customer sets values on all
functions, the development team assigns a cost to each index card.
The cost is the length of time the team expects it will take to
implement the tasks of that index card. If the team estimates a
function will take too long, the function can be broken up to
multiple cards. Once a cost has been assigned to all features, the
customer will work with the team until a commitment can be
made. After the first release of the product, the team computes the
project velocity. The velocity is the amount of work the team
expects to complete in a release and is usually dependant on the
initial iteration. After subsequent releases, the velocity can be
updated, however, is not expected to dramatically change. The
customer can choose to add, remove, or split stories, or change
the priority of a function anytime during the development process.
The team will change its plans accordingly.

The main focus during the design phase is the keep it simple
approach. The idea behind this approach is to keep all designs as
simple as possible, and never add things that are unnecessary for
the current task. Instead, the team uses spike solutions. A spike
solution is developed when the team encounters a difficult
problem. Before it attempts to complete the associated tasks, it
breaks up the problem and makes an operational prototype of that
part of design. The prototype is then evaluated. The idea is to
reduce risk as early as possible and stay within estimates for the
story. Refactoring is also part of design. Refactoring is where the
code is changed around in such a way that it is easier to read, but
doesn't change functionality. Refactoring improves the design of
the code after it has been written. It is important to remember
refactoring can get quite difficult as the system grows. Since
refactoring is part of code design, the design phase occurs both
before and during coding. Code is refactored and redesigned
continuously as the system is developed.

The coding phase starts with the development of unit tests. The
notion of creating tests before constructing code is known as test-
first development. The idea is to write tests that the code needs to
follow according to the user stories, and then construct the code in
such a way that it passes those tests. The team only does what is
necessary to pass the tests, nothing more or nothing less. It
follows the keep it simple approach that is implemented during
design. After the team completes coding the system, these unit
tests will serve as instant feedback. Another key feature of
extreme programming is pair programming. While writing code,
the team breaks up into groups of two people. These two people
work together at the same computer. They both work on problem
solving with the idea that two heads are better than one. While
coding, one person might focus on code design while the other
ensures that the code is accurate and that it will fit in with the rest
of the system. After the code is completed, it will be integrated
together with the work of other team members. This can be done
either by a separate integration team or by the same programmers
who wrote the code.

The testing phase focuses on the unit tests that have been created
during design and coding. The tests are automated so that
whenever the code is changed in the future, which will be often
due to refactoring, the tests can be rerun to check for accuracy.
Testing also includes acceptance tests. Acceptance tests are tests
that are specified by the customer and target system functions that
are reviewable from the outside by the customer. Once all unit
tests pass and the customer agrees with all acceptance tests, the
software is ready for its next release.

It is important to remember that extreme programming focuses
most of its time on programming and tests. While this method
keeps things as simple as possible and gets straight to the point,
some people believe that not enough time is spent on design.
Spending to little on design results in coding and re-coding and
could reduce productivity. It is important to have a sufficient
amount of design so that the team is confident about its coding
tasks.

4. THE PROJECT
As an experiment, I participated in a group project where we
designed and developed a cell phone game suitable for a cell
phone using the programming language Java 2 Micro Edition. We
designed everything from the beginning with no game
requirements given to us. We followed a development process
that our advisor uses in his undergraduate classes. The process
consists of defining system requirements, building the system,
and testing the system. The goal of the project was to have a
working game. We were restricted by time since this was a
summer program.

4.1 Define System Requirements
4.1.1 Define project
A brief two-paragraph description of what the project will do and
who will use it.

4.1.2 Define user personas
Personas are "artificial persons" that are representative of the
different types of users. The system is designed to make the
primary persona happy but the other personas should not be
unhappy.

4.1.3 Define user scenarios
User scenarios describe how someone will interact with the
system. This includes actual scenarios that could happen to a
person while playing through the game.

4.1.4 Develop the system use-cases
Use-cases refine the user scenarios and define the functions that
the system provides. This includes both the normal flow of events
and the exceptional conditions that can occur. The use cases are
drawn out using UML notations.

4.1.5 Describe the user interface
Describe main interface that the user will interact with. This
includes screen interactions and all options the user will have.

4.1.6 Storyboard the scenarios
A story board describes the sequence of actions, user inputs and
system responses, to complete a task on the system. It explains
what the display will look like at each key point of execution.

4.1.7 Write detailed requirements
Includes all functional, nonfunctional, and constraint
requirements that the system must satisfy.

4.1.8 Develop user and usage profiles
Usage profiles quantify how much each system function is
executed. Profiles can be developed for multiple personas and
compared.

4.1.9 Triage requirements
Based on the usage profiles, the requirements are prioritized
based on user needs and utility. Resources needed to implement
the requirement are estimated and a subset of the requirements
that will optimize the projects success is selected.

4.1.10 Verify requirements
Review the selected requirements to ensure that they are feasible
and will work as part of the system.

4.2 Build System
4.2.1 Define the system classes
Classes are derived from the nouns in the user scenarios. Every
system activity or primitive function should reside in a class.

4.2.2 Define system sequence diagrams
Sequence diagrams show how the classes work together to
execute each use-case function.

4.2.3 Define an interface for each class
The interface specifies the functions each class will show to the
outside world.

4.2.4 Implement the system
The class skeletons are coded based on the code generated from
the class diagrams. All coding takes place here.

4.3 Test System
The third and final phase in the process was to test the system.
However, due to time constraints, we were unfortunately unable
to do extensive testing on the system. Instead, we ran visual
acceptance tests by running the program and playing through the
game. This proved helpful in ensuring that the game is error free,
not necessarily that the system is error free.

4.4 The Game
My group followed the steps required in the process described
above to complete the design phase. Once design was complete, I
completed the build phase. Carlos Rivera created all the graphics
that would be used in the game. The design phase took about
three weeks, and the build phase took two weeks. Most of the
design ideas remained constant through the building phase;
however, most system plans did not remain intact. Several
changes needed to be made once coding started. Steps in the
design phase that were useful during building include the user
scenarios and the requirements. These two design steps were
helpful as a place to get started coding, but did not in any way
limit me in the creation of the game. The other design steps I view
as helpful only in that it gave us direction and gave the game an
identity.

The game concept is to help a ladybug through a maze and help it
find the exit. The game idea is very simple. As the ladybug
progresses through the level, it can turn various “seeds” into
“flowers” as a way to keep track of where it has already been in
the maze. The ladybug receives points for creating the flowers
and for completing the level. Our final game had two simple
levels. The user has various options throughout the game,
including viewing instructions, credits, the current score,
restarting the current level (which will reset the score to 0),
restarting the game, and exiting the game. After the completion of
the game the ladybug finds its “princess” and presumably lives
happily ever after.

The levels are implemented with a two-dimensional array map
that represents the spaces the ladybug can and cannot interact
with. When the ladybug tries to move to a new space, the array is
checked to see if the ladybug made a legal move. If so, the
graphics are updated accordingly. The maze graphic had to be
created precisely so that everything would fit together. The game
was programmed with a subset of Java SE, called Java 2 Micro
Edition (J2ME). J2ME is a freely available programming
specification and there are several tools available for working
with the language. I programmed the game so that it is
understandable and simple. There was no specific method I used
but my own personal style. The game is still in its early stages,
but is suitable as a demo at this point.

5. CONCLUDING REMARKS
By participating in this project, I have come to learn about the
general process my advisor uses in his classes. I have formulated
some strengths and weaknesses of the process and of the group
environment that I was a part of. I have suggested some
recommendations for improvements to the process. I have also
included some elements that I feel were missing and would have
made development go much smoother.

5.1 Strengths
One strength of the process is that everything is laid out for the
team. This is useful to undergraduate development teams because
it provides them with a guide to what needs to be done. It helps
the team with direction and gives them an idea of what to do next.
Another strength of the process is that it gets the team to think
about every aspect of design. Well this might not always be
necessary; it ensures that the team knows exactly what the

program will do, how it will look, etc, providing the constructed
plan is followed. Another advantage of this process is that once
the plan is made, the coding phase can be done relatively
individually. A plan has been constructed by the team, with all
aspects predetermined. This makes coding just a matter of
following and implementing the design into code.

The small group also has strengths over large groups. The small
group is very good at communication, and tends to be very
flexible. It is very easy to call a meeting with the group, or to just
ask questions during the day and get instant feedback or
clarification. Different members of the team can help out in
different parts of design based on their personal strengths. Each
member can contribute to the team to make an complete effort at
creating the plan.

5.2 Weaknesses
The process we used also has numerous weaknesses. A lot of time
needs to be spent on planning and design. Much of this design
could be changed later or the plan could be trashed in turn of a
more efficient aspect of the plan. Also, the design doesn't ever get
tested until coding begins. If a flaw is found in the plan, major
changes will need to be made. This could result in a waste of
productive time. This process is very design heavy and that will
not always work. Most of the time the team is not sure how to
design things until they start to code and get a feel for how things
work. They will just be guessing at good design strategies and
wasting time on planning things that will never get used. In my
situation, most of the design ideas got modified or changed
completely during the construction of the game. This affected the

Figure 2- The game being executed on Sun’s Wireless Toolkit cell phone emulator. Shown is the
starting screen, the game screen, and the ending screen.

way the system interacted with itself and also the functionality the
game would provide.

A weakness of the small group environment I was part of is that it
did not have a manager. A manager is extremely important to
keep team members on task and make sure everyone is
contributing to the project. This is particularly important in
undergraduate projects where team members have different levels
of skill. The project will be forced onto one person with while the
rest of the team will not contribute appropriately. A manager is
one of the biggest needs that our group had during the project. It
causes too much pressure to the team and makes the final product
fall below its initial expectations.

5.3 Recommendations
Overall our group spent too much time on design and wasted
productive time on steps that never actually got used. For this
reason I recommend that small groups use a modified version of
extreme programming. Extreme programming is efficient in that it
doesn't waste time on design ideas that it will never use. It also
keeps things as simple as possible and produces readable accurate
code thanks to pair programming. It also forces testing to become
part of the construction process, and helps create more complete
versions of the program. However, I do not feel that design should
be completely cut out of the development process. I feel that
having some sort of initial plan that the group agrees on is
important for the success of the program and for team unity. The
team also needs a manager. This is almost necessary in that the
manager will provide the team with focus and organization and
will help ensure that the team stays on track. The manager also
can modify plans as necessary and help with team
communication. Plans are always changing in software
development, and an agile process is better able to handle these
changes.

In the future it would be desirable to create this mutated process
that is specifically suited for small groups. The new process
should be tested and implemented to ensure that it will work. The
process could be explicitly written out with documentation on
what parts of the new process worked and what didn’t work. This
is the next step of the research.

6. ACKNOWLEDGMENTS
I would like to thank my advisor Dr. John Bowles for help with
design and for his continued support throughout the project. I
would like to thank my group members who helped develop the
game with me: Carlos Rivera, LaShea Johnson, Lalique Gumbs-
Prince. I would also like to thank Dr. Caroline Eastman, Dr.
Libby Alford, Roxanne Spray, and Tiffany Mintz for their
mentorship. I would like to thank the National Science
Foundation for funding this project and making this research
experience possible for me, and the University of South Carolina
for hosting the program.

7. REFERENCES
[1] Pressman, Roger S. Software Engineering: A Practitioner’s

Approach 6th Edition. McGraw-Hill, NY, 2005. pp 45 – 94.
[2] Li, Sing and Knudsen, Jonathan. Beginning J2ME: From

Novice to Professional 3rd edition. Apress, CA, 2005. pp 1 –
102.

[3] Stein, Michael V. “Using Large vs. Small Group Projects in
Capstone and Software Engineering Courses.” Journal of
Computing Sciences in Colleges, 2002, volume 17, issue 4.
pp 1 – 6. Date accessed: 6-23-06. url:
http://delivery.acm.org/10.1145/780000/774291/p1-
stein.pdf?key1=774291&key2=0407951511&coll=ACM&dl
=ACM&CFID=12405&CFTOKEN=94402717

[4] Paulk, Mark C. “Using the Software CMM in Small
Organizations.” Carnegie Mellon University, 1998. pp 4-5.
Date accessed: 6-26-06. url:
http://www.tilysoft.com/SoftwareManage/file%5Cusing_soft
ware_Cmm.pdf

[5] Nunes, N. J. and Cunha, J. F. “WISDOM: A Software
Engineering Method for Small Software Development
Companies.” Software, IEEE, 2000, volume 17 issue 5. pp
113 – 119. Date accessed: 6-26-06. url:
http://ieeexplore.ieee.org/iel5/52/19003/00877877.pdf?isnum
ber=&arnumber=877877

[6] Wells, Martin J. J2ME: Game Programming. Premier Press,
MA, 2004. pp 601 – 605.

