
Using the Common Criteria to Elicit Security Requirements with Use Cases

 Michael S. Ware John B. Bowles Caroline M. Eastman
 Fairmont State University University of South Carolina University of South Carolina
 Fairmont, WV 26554 Columbia, SC 29208 Columbia, SC 29208
 mware@fairmontstate.edu bowles@engr.sc.edu eastman@engr.sc.edu

Abstract

The Common Criteria is often too confusing and technical
for non-security specialists to understand and therefore
properly use. At the same time, it is essential that security
critical IT products under development be validated
according to such standards not after but rather during the
software engineering process. To help address these issues,
this paper presents an approach to eliciting security
requirements for IT systems with use cases using Common
Criteria methodologies. The approach involves using actor
profiles to derive threats, mapping derived threats to
security objectives, and mapping objectives to security
requirements using a CC Toolbox data set. Our aim is to
ensure that security issues are considered early during
requirements engineering while making the Common
Criteria more readily available to end-users in an
understandable context. Violet, an open source UML
diagram modeling tool, has been extended to implement the
approach from a use case textual description perspective.

1. Introduction

To address the need for establishing a world with robust
software, one recommendation by the 2004 Security Across
the Software Development Lifecycle Task Force is to
educate and train developers to put security at the
foundation of the software development process [9]. Use
case developers are uniquely positioned to adhere to this
recommendation. While specifying desired services and
expected user interaction in requirements, use case
developers can also analyze system security by considering
unanticipated user actions and unintended system
behaviors.

Previous work suggests that use cases have become
increasingly common during requirements engineering but
offer limited support for eliciting security threats and
requirements [8]. As a result, misuse cases [8], abuse cases
[10], and security use cases [5] have all been proposed as
methods for specifying security threats, providing
assurance arguments during design and testing, and
specifying security requirements, respectively. Although
these approaches are certainly useful, there is still a need to
integrate security into use cases using standards such as the
Common Criteria (CC) [2].

The CC is an international standard to be used as a basis
for evaluating the security properties of information
technology (IT) products or systems. Since use cases focus
on the behavior of various actors, describing a system
under design in ways similar to the demands of the CC can
help identify potential threats to actors and explain how to
mitigate identified threats using security standards.

Thus, this paper presents a CC approach to eliciting
security requirements of IT systems based on use case
“actor profiles”. The specification of both primary and
supporting actors of a use case and completion of an actor
profile allow for pre-defined threats to be derived and
mapped to security objectives and requirements based on a
data set used by the CC Toolbox [3]. Violet [15], an open
source UML diagram modeling tool, has been extended to
implement the approach from a use case textual description
perspective.

Such an approach will not be easy since CC standards
by themselves are often too confusing and technical for
non-security specialists to understand and therefore utilize
[8]. It has also been concluded that CC protection levels
are rarely used in practice [9]. However, the number of
software vulnerabilities reported to the CERT Coordination
Center reached 4, 129 in 2002, 3, 784 in 2003, 3,780 in
2004, and a record high 5,222 in 2005 [4]. These statistics
show that software is currently being built and deployed
with vulnerabilities. The presence of vulnerabilities in
software can ultimately lead to attacks, and the failure or
misuse of IT systems is simply not an option due to
society’s increased dependency on them. The approach
presented here is an effort aimed at combating these
problems from the ground up by integrating IT security
seamlessly into the software development life cycle
(SDLC). We also hope our approach will aid in making the
CC methodology more readily available to non-security
specialists in an understandable context.

2. Related Work

Sindre and Opdahl extended regular use cases both in
UML diagram and textual template form with misuse cases,
which specify behaviors not wanted in a system [8]. They
propose labeling misusers and misuse cases along with
normal actors and use cases to represent threat and
mitigation in a diagram. Similar to our approach, misuse

cases are driven by threats. However, Sindre and Opdahl
focus mainly on providing method guidelines for helping
individuals describe misuse cases textually whereas our
approach systematically derives threats and maps them to
security objectives and requirements based on the CC.
Nevertheless, Sindre and Opdahl recognize the possibility
of integrating misuse cases with the CC [8].

McDermott and Fox have proposed abuse cases, which
are very similar in nature to misuse cases, to capture
security requirements and provide help during the
requirements, design, and testing phases of a security
engineering process [11]. In later work, McDermott further
describes how abuse cases can be extended for providing a
lightweight means of increasing assurance in security
relevant software [10].

A key difference between abuse-case based approaches
and our approach is that abuse cases clearly indicate actual
harm to a system resource, stakeholder, or the system itself.
Instead of describing actual harm in terms of abuse, our
approach is driven by the potential for system threats and
therefore the possibility for harm to occur. Furthermore,
our approach utilizes the CC and does not provide any
assurance arguments or methodologies for giving such
arguments.

Claiming that misuse cases are highly effective ways of
analyzing security threats but are inappropriate for the
analysis and specification of security requirements,
Firesmith has proposed security use cases [5]. Security use
cases represent countermeasures that mitigate threats and
are driven by misuse cases. Firesmith also shows how
security use cases can be incorporated in UML diagrams
and further detailed in template form. Similar to our
approach, the goal of security use cases is to specify
security requirements that protect assets from harm realized
by threats. However, unlike security use cases, our
approach aims to counter threats using CC methodologies
to specify objectives and requirements.

3. Common Criteria Approach

3.1. Overview

Beginning July 1, 2002, any U.S. Government
acquisition of IT systems dealing with information security
must pass a CC evaluation or equivalent [12]. In general,
the CC presents requirements for the IT security of a
product or system under the distinct categories of
functional and assurance requirements [2]. The CC
functional requirements define desired system behavior.
The CC assurance requirements are used to provide
confidence that desired security measures are effective and
implemented correctly. Our approach focuses solely on
using CC functional requirements, which fall under the
following eleven categories: security audit, communication,
cryptographic support, user data protection, identification

and authentication, security management, privacy,
protection of security functions, resource utilization, target
of evaluation access, and trusted path/channels [2].

A target of evaluation (TOE) is the product or system
being evaluated. One of the most important documents
required to be written before a CC evaluation can take place
is a TOE security target. One purpose of a security target is
to describe the TOE environment by identifying threats,
establishing a set of security objectives to counter identified
threats, and specifying security functional requirements to
meet each identified objective.

To help developers prepare for a CC evaluation, a
program called the CC Toolbox is freely available currently
as unsupported software [3]. The CC Toolbox guides
developers through the process of creating a security target
and is packaged with a pre-defined environment data set
that contains a listing of threats, objectives, and CC
functional requirements which may be used when
describing the TOE environment.

Our approach involves describing a system being
designed in ways similar to how a TOE is required to be
described in a security target. More specifically, our
approach first identifies threats to the actors of a use case
and then uses a portion of the CC Toolbox data set to map
objectives to threats and requirements to objectives.

3.2. Correlating the Common Criteria

To correlate use cases with the CC, there is a need to

specify both the primary and supporting actors of a use case
and to describe each actor more formally than is commonly
done in traditional practices. To clarify, consider a use case
check grades that has a primary actor student as shown in
Figure 1. Implied in the successful completion of check
grades is the interaction with an academic database
management system (DBMS) that contains grade data. To
analyze check grades from a security standpoint, the
DBMS interaction needs to be explicitly stated, and the
relationship between the student and the DBMS actors
needs to be described. As shown in Figure 1, the primary
goal of the student actor is to read grades, and the primary
goal of the academic DBMS actor is to retrieve grades.
Furthermore, check grades is described as a private
exchange since private information is flowing between the

check grades

Private exchange

Academic
DBMS

read grades

Student

retrieve grades
Figure 1: check grades use case

two actors.
To fulfill the need for representing use cases in this

manner, our approach requires a use case creator to
complete an actor profile for each actor involved in a use
case. An actor profile has seven fields declaring the actor’s
type, location, use case association, and whether or not the
use case involves exchanging private and secret
information. Table 1 shows an example of an actor profile
for the academic DBMS supporting actor in the previously
mentioned check grades use case.

3.3. Description of Actor Profiles

In line with Robertson and Robertson [13], an actor is

considered to be one of three types: human, cooperative, or
autonomous. In Table 1, note that the actor is considered to
be of type cooperative since the DMBS must cooperate
with the primary actor of check grades by a request-
response dialog. Human actors are active entities that
interact directly with the information flow of a use case,
and autonomous actors act independently of the
information but have connections to it [13]. Thus, an actor
can be a human actor or person, cooperative actor such as a
DBMS or server, or an autonomous actor such as
standalone computational software. To continue describing
an actor profile, the location field specifies the actor’s
physical location with respect to the system and can either
have a value of local or remote. An actor should be
classified as remote if it is possible for the actor to interact
with the system from a remote location even if the actor
may also perform operations from a local location (e.g., an
employee can access a corporate database both at work in
the office and at home using a personal computer). The
value of the private field is either true or false depending on
whether or not information flowing to and from the actor
should remain private. Likewise, the value of the secret
field is either true or false depending on whether or not
confidentiality of the flowing information needs to be
ensured.

Depending on the actor’s type, the use case creator must
select the actor’s association with the use case from a set of
pre-defined categories. The association value reflects the
actor’s overall goal in successfully completing the use case.
For example, if the actor’s type is cooperative, then the
association is a “request”, and it can hold any one of the
following values: retrieve, store, retrieve_store, send, or
receive. The value of the request association depends on

whether information is only being retrieved, stored,
retrieved and stored, sent, or received by the cooperative
actor. Furthermore, the supporting actor’s association
needs to be validated with the primary actor’s association
for use case coherence, and vice versa. In Figure 1, since
the value of the academic DBMS association is REQUEST
= retrieve, the student association can only be ACTION =
read. This relationship claims that the student checks her
grades by reading them and the DBMS only needs to
retrieve them. Similar valid relationships exist for all the
possible combinations of actor types and associations.
Table 2 shows all associations for each of the three actor
types.

3.4. Actor threats

Actor profiles provide the foundation that allows for

threats to be derived and associated with an actor based on
the relationships between the actors of a use case. Use case
associations are assigned threats from a predefined set of 12
different threat categories encompassing data modification,
data interception, data disclosure, privacy violations,
auditing, denial of service, repudiation, and several others.
The threat categories were partly compiled based on
terminology from a threat listing used by the ECMA Public
Business Class Protection Profile [6], which was based on
the CC, and partly on the predefined environment data set
provided by the CC Toolbox [3]. Only those threats
determined to be applicable to the majority of all IT
systems were included in the 12 categories. Currently, the
categories of threats used by our approach are as follows:

• T.Change_Data
• T.Data_Theft
• T.Deny_Service

• T.Disclose_Data
• T.Impersonate
• T.Insider

Table 1. Academic database actor profile.
Actor: Academic DBMS
Use Case: check grades
Type: cooperative
Location: local
Private Exchange: true
Secret Exchange: false
Association: REQUEST = retrieve

Table 2. Actor type use case associations.
Human Actor Cooperative Actor Autonomous Actor

• ACTION=read
• ACTION=write
• ACTION=read_write
• ACTION=ask
• ACTION=answer
• ACTION=ask_answer

• REQUEST=retrieve
• REQUEST=store
• REQUEST=retrieve_store
• REQUEST=receive
• REQUEST=send

• FUNCTION=display
• FUNCTION=update
• FUNCTION=display_update
• FUNCTION=receive_orig
• FUNCTION=send_new
• FUNCTION=no_change

• T.Outsider
• T.Privacy_Violated
• T.Repudiate_Receive
• T.Repudiate_Send
• T.Spoofing
• T.Social_Engineer

Adhering to the recommendations of the CC, threats are
prefixed with a capital letter (T) followed by a period.
Some threats, such as T.Change_Data, T.Data_Theft, and
T.Deny_Service, have sub-threat categories that better
refine the threat and apply it to a more specific situation.
For example, T.Data_Theft has a sub-threat type called
Intercept for describing eavesdropping that occurs on
communication lines and a second sub-threat type called
User_Collect for describing situations when a user abuses
authorization to collect data.

3.5. Deriving Actor Threats

Using the above threat categories, threats are associated

with an actor based on an evaluation of the actor’s profile.
For example, Table 3 outlines the threats that would be
associated with a human actor, which is specified to be
interacting with a cooperative or autonomous actor in the
actor’s profile, based on the value of the human actor’s
“action” field. The threats applied to the
ACTION=read_write association would simply be a
combination of the threats applied to both ACTION=read
and ACTION=write.

To further explain the threat derivation process,
consider the previously mentioned check grades use case
that has a student primary actor and an academic DBMS
supporting actor as declared in Table 1. The check grades
use case involves a private information exchange between a
remote, human actor and a local, cooperative actor. After
comparing both of the actor profiles, Table 4 shows that
four threats were derived for the student actor, and five
threats were derived for the academic DBMS actor.

Once actor threats have been identified, objectives must
be established to counter each threat, and requirements
must be specified to satisfy each objective. This
information is almost entirely provided by data taken from
the pre-defined environment data set used by the CC
Toolbox. The CC Toolbox data set carries out the CC
rationale process by mapping threats to security objectives
and objectives to CC functional components (i.e. security
requirements). For those threats, such as T.Insider,
T.Outsider, and T.Privacy_Violated, not present in the CC
Toolbox data set, we have assigned appropriate security
objectives defined by the data set to them.

4. Tool Support

To implement our approach, an open source UML

diagram modeling tool called Violet has been extended to

support use case textual descriptions. To incorporate the
true power of use cases, the extensions give Violet users the
capability to create, save, and open a “use case bundle”,
which we define as a collection of use case textual
descriptions that all relate to the same system under design.

The dialog used to create and edit use cases has seven
tab regions allowing for data entry of the basic fields of
Cockburn’s template [1] as illustrated in Figure 2. In
addition, a new field called “Threats” has been added to the
template. The threats tab allows for derived threats to be
added to an actor tree. The addition of the threats field to
the template is similar to the approach taken by Sindre and
Opdahl for specifying lightweight misuse case descriptions
[8]. However, instead of describing threats in scenarios,
our approach uses the threats field to display threats,
security objectives, and security requirements retrieved
from the tool’s knowledge base.

To demonstrate the practicality of the Violet extensions,
consider a simplified student enrollment system that has the
previously described check grades use case with student
and academic DBMS actors. The actors tab allows for the
use case creator to specify both the primary and supporting
actors and complete their corresponding actor profiles.
Although not depicted in Figure 2, by clicking the View
Profile button for the DBMS actor, the actor profile dialog
is populated and shown as in Figure 3. Using the actor
profile interface, the creator can specify the type of the
actor, its location, whether or not the actor is exchanging
private or secret information, and finally the use case
association. Although also not shown in Figure 2, another
button located on the actors tab titled Validate Actors

Table 3. Human actor interaction threats.

ACTION = read ACTION = write
T.Impersonate
T.Repudiate_Receive

if (Private Exchange)
 T.Privacy_Violated

if (Secret Exchange)
 T.Data_Theft

if (Location == local)
 T.Insider
else
 T.Outsider

T.Change_Data
T.Impersonate
T.Repudiate_Send

if (Private Exchange)
 T.Privacy_Violated

if (Secret Exchange)
 T.Disclose_Data

if (Location == local)
 T.Insider
else
 T.Outsider

Table 4. Check grades actor threats.
Student Threats Academic DBMS Threats

1. T.Impersonate
2. T.Outsider
3. T.Privacy_Violated
4. T.Repudiate_Receive

1. T.Deny_Service
2. T.Privacy_Violated
3. T.Repudiate_Receive
4. T.Repudiate_Send
5. T.Spoofing

initiates the process of validating the specified primary and
supporting actor relationship for coherence as explained in
Section 3.3. After actor profiles have been completed and
validated, threats can be derived by clicking the Run CC
Analyzer button located on the threats tab. Figure 2 shows
the threats tab and the results after analyzing the check
grades use case.

As shown in Figure 2, threat names begin with a T.
prefix and are represented as child nodes for each actor in
the tree, objective names are prefixed with O. and are child
nodes of a particular threat, and CC requirements are child
nodes of a specific objective. By selecting a threat,
objective, or requirement from the tree, a description is
provided in the right hand text area. Data taken from the
CC Toolbox pre-defined environment data set is used to
provide for almost all of the threat, objective, and
requirement descriptions.

Also as depicted in Figure 2, right clicking an actor in
the tree displays a menu that allows for the creation of new
threats not presently stored in the knowledge base.
Similarly, objectives can be added to a threat, and CC
requirements can be added to an objective. This important
feature allows for the creation of specific threats that may
only be appropriate for the system under design.
Additionally, threat and objective descriptions can be
modified to better explain how they impact the system
under design.

As an example of extending the knowledge base, a
threat called T.Stu_Unattended_Comp may be added to the
student actor threat list of the check grades use case. This
new threat may describe a situation when a student leaves
an active computer session unattended allowing another
individual to use the computer possibly in a malicious
manner. In return, an objective named O.Screen_Lock,
which may require a mechanism to be implemented
whereby a user is automatically logged out after a specified
time interval of inactivity has elapsed, may be created to

counter one aspect of the T.Stu_Unattended_Comp threat.
Security requirements must then be specified to satisfy the
new O.Screen_Lock objective. This type of flexibility is
necessary while team members are brainstorming use case
actor threats, defining objectives to counter threats, and
assigning security requirements to satisfy objectives that
are not already stored in the knowledge base.

Finally, the user has three options for generating output
to a table structured HTML file: general, CC rationale, and
a combination of general and CC rationale. The general
option generates a use case template with the threats field
containing a list of threats associated with each actor. Each
threat has a nested list of security requirements which are
needed to satisfy the objectives that counter the threat. The
CC rationale option generates a mapping of threats to
objectives and a mapping of functional security
components to objectives. The third option is simply the
general report with the CC rationale appended to the end.
The CC rationale report is aimed at producing the rationale
portion of a TOE security target. Moreover, the mappings
clearly show the objectives needed to counter a specific
threat and the requirements needed to satisfy a specific
objective.

5. Conclusion and Future Work

Our approach is aligned with two of the six best practice
guidelines for software security as outlined by McGraw:
one being security requirements engineering and the other
being security analysis, security testing, and use of the CC
7]. Our approach also acknowledges the second priority of
the President’s National Strategy to Secure Cyberspace by
helping to assess and secure emerging systems in order to
reduce threats and related vulnerabilities [14]. In addition,
it is anticipated that use of our approach will help ensure
the following:

Figure 2: Threats tab.

• consideration of security issues, most notably actor
threat analysis, early during the SDLC;

• CC made more readily available to non-security
individuals, such as end-users and developers, in an
understandable context;

• providing aid in determining a more complete set of
security requirements for a system under design.

Current work is on going to investigate ways to
incorporate our approach into use case diagrams for those
individuals who prefer a visual context view of the system.
Also, while our approach focuses primarily on threats, it
may be more beneficial to further describe the system
environment by stating policies and assumptions aligned
with the CC. Finally, it has yet to be studied how our
approach can be extended to specify CC security assurance
requirements.

Our approach is not intended to make a complete
determination of all possible threats and security
requirements for a system under design. Rather, it is
intended to jump-start the security requirements
engineering process as early as possible in the SDLC while
utilizing the CC in an understandable manner.

6. Acknowledgements

This work was done at the University of South Carolina as
part of the Research Experiences for Undergraduates in
Multidisciplinary Computing project supported in part by
National Science Foundation Award # 0353637.

7. References

[1] A. Cockburn, “Writing Effective Use Cases”, Addison-
Wesley, Boston, 2001.

[2] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and general
model, Version 2.2, CCIMB-2004-01-001, January 2004.

[3] Common Criteria Toolbox Version 6, SPARTA, Inc.,
February 2003, Retrieved June 15, 2005, from
http://cctoolbox.sparta.com/.

[4] Computer Emergency Response Team (CERT) Coordination
Center, CERT/CC Statistics 1988-2005, Vulnerabilities report,
Retrieved September 5, 2005, from
http://www.cert.org/stats/cert_stats.html.

[5] D. Firesmith, “Security Use Cases”, Journal of Object
Technology, http://www.jot.fm/issues/issue_2003_05/column6,
May-June 2003, vol. 2, no.3, pp. 53-64.

[6] European Computer Manufacturers Association (ECMA)
International, ECMA protection profile: E-COFC public business
class. Technical report, TR/78, Geneva, Switzerland, 1999.

[7] G. McGraw, “Building Security In: Software Security”, IEEE
Security and Privacy, IEEE Computer Society, March/April 2004,
pp. 80-83.

[8] G. Sindre and A.L. Opdahl, “Eliciting security requirements
with misuse cases”, Requirements Engineering 10, Springer-
Verlag London Ltd, January 2005, pp. 34–44.

[9] Improving Security Across the Software Development Life
Cycle. Task Force Report, April 1, 2004. Retrieved June 10, 2005,
from http://www.cyberpartnership.org/SDLCFULL.pdf.

[10] J. McDermott, “Abuse-case-based assurance arguments”,
Proceedings of the 17th annual computer security applications
conference (ACSAC’01), New Orleans, Los Angeles, 2001.

[11] J. McDermott and C. Fox, “Using abuse-case models for
security requirements analysis”, Proceedings of the 15th annual
computer security applications conference (ACSAC’99), Phoenix,
Arizona, 1999.

[12] National Security Telecommunications and Information
Systems Security Policy No. 11, Revised Fact Sheet, National
Information Assurance Acquisition Policy, Retrieved June 21,
2005, from http://niap.nist.gov/cc-
scheme/nstissp_11_revised_factsheet.pdf.

[13] S. Robertson and J. Robertson, “Mastering the Requirements
Process”, Addison-Wesley, London, 1999.

[14] The National Strategy to Secure Cyberspace, February 2003.
Retrieved June 3, 2005, from
http://www.uscert.gov/reading_room/cyberspace_strategy.pdf.

[15] Violet: Very Intuitive Object Layout Editing Tool, Retrieved
June 12, 2005, from http://www.horstmann.com/violet/.

Figure 3: Actor Profile Dialog.

