
Video Games and Software Engineering: A Case Study

Matthew Ginley, John Bowles, and Caroline Eastman

Department of Computer Science and Engineering
University of South Carolina

Columbia, SC 29208

E-mail: ginley@mailbox.sc.edu

ABSTRACT

Video games, due to their unique nature and relative infancy
compared to other software, are just recently being studied with a
strong engineering aesthetic like their traditional counterparts. In
this case study, we examine the benefits of using a planned,
engineered approach to creating a fun and interactive piece of
software. This research centers on an original game, developed
by the author. Established object oriented software engineering
was applied at every step of the development process. End-user
testing will measure the game's fun factor, with results being
analyzed to determine the relationship between the engineering
behind the game and its final playability.

INTRODUCTION

Many possible game ideas were considered. A Japanese language
educational game, a top down 2-dimensional fighter, and a
traditional role playing game were considered. The author settled
with a music game based on drumming and the coordination
issues behind the concept of rhythm. Such a game proved to be
unique, require a high degree of user interaction, and provided
many design elements to examine.

Ultimately, the author settled on this game idea because of the
opportunity for intense rhythmic capability not possible with
playing a real drum set. This is because in mapping a drum set to
the keyboard, all the percussive input comes from your fingers.
At first thought, this seems very obvious, but one must contrast
this mode of input with that of a real drum set, where input is
obtained from four appendages. One may have greater
independent control over their arms and legs, but the number of
sounds that can be played at once is four, and switching between
components will slow down the speed at which various beats can
be played.

With a keyboard, the situation changes dramatically. There is less
independent control over ten fingers, but one can play up to 10
sounds at once! Also, the distance a finger must travel to strike a
different key is a few millimeters compared with a hand moving
many feet on a drum set. To put it simply, on a drum set, a player
is a human with four slow, but better controlled sources of input,
while on a keyboard a player is a less coordinated, lightning fast
10-arm "decapus."

Drum Simulator Specification

The game, which is currently under development is a single player
game titled "Drum Simulator." The key concept behind the game
is mapping the sounds of a drum set onto the keyboard in a
fashion that provides flexibility for players of different abilities.
This aspect of the user interface is crucial to the success of the
game. Beyond that, the game is broken up into two different
modes of play: the first is a practice mode and the second is the
real game play mode where the user listens to a drum beat and
then must play it back.

The first mode, called Free Play, allows the player to play the
keyboard layout without timing or scoring constraints. It’s
essentially an empty game, but it enables you, the player, to
become familiar with the control scheme. The second mode, the
real game play mode, called Play That Beat, is based on rhythmic
call and response.

Figure 1 Play That Beat Activity Diagram

Figure 1 is a UML activity diagram of the real game play mode.
Note the two different ways the game can come to an end.

When the player is ready, the game outputs a drum beat (audibly
and visually) lasting about 5 seconds. Then the player is expected

to play that same beat on the keyboard without mistake. If a
mistake is made, the player must try again. If played correctly,
the game loads the next beat (the beats become more difficult as
the game progresses) and the player listens and plays again. The
game ends when the player has either made 3 mistakes, or
completed all the beats included with the game. Score is kept
according to the progress and how many mistakes have been
made.

Figure 2 Play That Beat Game Screen

Figure 2 is a screen layout of the second game mode. There are
the Listen and Play buttons described earlier, and three boxes to
count the strikes, or mistakes, committed by the player. The four
horizontal lines represent certain sound domains. Along these
lines, markers move from right to left, indicating a sound that
needs to be made. The marker striking the left hand side
represents the exact moment when the user needs to hit the
corresponding key on the keyboard. The top line is for the crash
cymbal markers, the second for the closed hi-hat and ride cymbal,
the third for the snare drum and bass drum, and the bottom most
line is for the tom 1 and tom 2 sounds. The width of the
command lines represents one full measure in 4:4 time signature.
The screen shown in Figure 2 indicates the standard rock drum
beat.

ENGINEERING OVERVIEW

Adhering to a software engineering process has helped game
development significantly, and currently the game is in the coding
and implementation phase. The planning tasks suggested by
(Rucker 2003)—making a schedule, establishing milestones, and
predicting risks—have proved invaluable. The constraint triangle
was presented first and foremost. The notion of adjusting quality,
time, and cost in direct relation to each other helped provide a
limit to the number of features in the game specification. With
the project time and cost well established from the beginning, the
quality (complexity) of any game to be developed had to be

limited.

With respect to scheduling, this project would not be where it is if
it were not for creating a schedule document with appropriate
milestones. The major project milestones were: 1) create game
concept; 2) write project abstract; 3) collect requirements; 4)
develop specification; 5) illustrate design; 6) code game alpha
builds; and 8) write conference paper. Ironically, this project
might even be further along if the risks the author identified
during the initial planning had been better avoided. The project's
primary obstacle at this point is the complexity of the Pop game
framework that accompanies (Rucker 2003), and this risk was
explicitly identified in the project's initial schedule document.

An undervalued recommendation from (Rucker 2003) was
defining the game appearance prior to implementation and coding.
Defining the game screens ahead of time provides insight as to
what graphics setup will be needed. With the many choices
floating around such as Windows MFC, OpenGL, DirectX, or
another, knowing the graphical complexity of a game is essential
to deciding which graphics package will be used. With Drum
Simulator, the visuals are no more than small circles sliding
across the screen, so the less powerful and less complicated
Windows MFC graphics were chosen.

This recommendation extends to sound in the same fashion. With
drumming, many different sounds are played at high speeds and
quite often two sounds at the same time. These situations had to
be handled in Drum Simulator, or the playability of the game
would be ruined. The game would not work if the audio output
does not keep up with the player's fingers or if the game could not
output a snare and crash cymbal sound at the same time. Thus the
innate sound capabilities in the Win32 API were insufficient. The
API functions for playing sound are not that fast, and not capable
of playing multiple sounds at once. With this audible complexity,
the DirectSound API of DirectX was chosen for handling audio
output in Drum Simulator (McShaffry 2005).

User Interface Development

A central discovery of this project was the importance of the user
interface and control scheme with respect to the game. Morrison
(Morrison 2003) emphasizes that a well thought out, intuitive
control setup adds immeasurable substance to a game. A game's
fun factor is based in large part on the user interface. After all, a
game differs from other software in that it is meant to be fun, and
a user engages in this sensation through the interaction. Thus, a
focus of the engineering (and this project as a whole) was on the
development of the user interface.

The first step was to index every component on a drum set. For
each component, the following characteristics were examined:
which hand(s) play that component, how many sounds that
component typically produces, the rhythms typically played on
that component, and the usual speed at which that component is
played. For example, the snare drum, a very central part of a
drum set, is played with both hands but on many beats just with
the left hand, it typically produces two sounds (regular strike and

a rim shot), and a variety of rhythms and speeds are used when
playing it.

All of these considerations have an impact as to which keys, and
how many keys should be assigned for each drum sound. After
cataloging the typical drum set components, 14 different sounds
needing 22 keys on the keyboard were established. This number
is definitely unacceptable—there is no way people can play a
game that requires 14 different sounds. Those numbers were
reduced to the essential seven sounds on ten keys. Seven sounds
is still a large number for the average person, but considering the
game relies heavily on only four central sounds (closed hi hat,
snare, bass, and crash cymbal), this number will do.

Before placing the sounds on a keyboard layout, some game
considerations should be considered. As mentioned, this game
provides an opportunity to play some outlandish drumming by
taking advantage of the ten fast fingers over four slow limbs
concept. To fulfill this ideal, extra keys may be added to the
game for some components. The reason is very simple, for if
there are only two keys assigned to snare drum sounds, then you
can only play snare drum sounds as fast as you can coordinate two
fingers. If, however, in the pursuit of a fun, but unrealistic (on a
real drum set) opportunity, the game provides four or more keys,
the player can then use that many more fingers to play snare
sounds. Granted this takes more coordination to use more fingers,
but that provides a depth to the user interface and the game that
can be taken advantage of by more expert players, while easily
ignored by beginning players who can only handle one or two
keys. This situation is maximized with the bass drum, where the
bass drum is usually played with one foot, or two for advanced
drummers, and even still the feet are much less coordinated than a
person's arms. By providing four or more bass drum keys,
awesome bass drum patterns become possible, possibly making
traditional bass drumming in reality seem boring.

After cataloging drum components, totaling possible sounds, and
adding key totals, the final step is to map the sounds to the
keyboard. The more central parts of a drum set, such as the snare
drum and bass drum, were placed first to maintain their priority,
with less used sounds placed on more distant keys (farther from
the G and H keys). Exactly like on a drum set, the two snare keys
are placed dead center, offset to the left by one key to
accommodate things on the right. With the snare drum sounds
placed on keys F and G, the toms go above that. Tom 1 was
placed on keys R and T; Tom 2 following on keys Y and U. The
hi hat key was placed on the right of the snare drum for game
purposes, as in real life it is on the left which presents a problem
with crossing over fingers on the keyboard. The hi-hat was
placed at H, the ride cymbal at J, and the bass drum, appropriately
at B.

Figure 3 Key Assignments for Game Controls

The mapping shown in Figure 3 is the culmination of the drum set
to keyboard analysis. Every component sound was placed
accordingly, and with the correct number of keys. The centrality
of the snare, bass, and hi-hat keys is important, as these sounds
will be used the most in the game. This reflects the nature of
learning rock drumming, where most beginning drum beats use
only these three sounds. Another important aspect is the
alignment of the toms, above the snare drum and arranged in
sequential order. Also, the ride cymbal is placed on the far right,
as it is rarely played with your left hand.

RESULTS

This research is a work in progress in the sense that the complete
game with all of its planned game modes is unfinished as of this
writing. In addition, more end-user testing, more interface
evaluation, and more internal optimization still need to be done.
In order to extend this research further, the case study could
examine developing a game that is mouse, trackball, joystick, or
mouse and keyboard controlled.

However, the case study has shown the effectiveness of using
software engineering techniques to improve the efficiency of
video game development. To conclude, the following results are
enumerated:

• Specifications can quickly become outlandish. Keep
your deadline and the complexity of the game in mind
when scheduling.

• Implementation of games is especially difficult due to
heavy graphical and timing issues. Maintain rigorous
scheduling, cut features if necessary.

• The reality of the game model can interfere with the final
game fun factor. Always sacrifice game "realism" for
entertainment value.

• User Interface, User Interface, User Interface. Do not
proceed a step beyond requirements without heavy
consideration for the User Interface and control scheme.
A single key function can make or break a game.

ACKNOWLEDGEMENT

This work was done as part of the Research Experience for
Undergraduates in Multidisciplinary Computing project at the
University of South Carolina and supported in part by the
National Science Foundation (award #0353637).

REFERENCES

McShaffry, Mike. 2005. Game Coding Complete, 2nd Edition.
Paraglyph, Phoenix, AZ.

Morrison, Michael. 2003. Teach Yourself Game Programming in
24 Hours. Sams, Indianapolis, IN.

Rucker, Rudy. 2003. Software Engineering and Computer Games.
Addison-Wesley, Harlow, UK.

