Checkout our website for prospective students.

CSE Faculty Research Awards

We are happy to report that several of our faculty members have received research awards. They are:

  • Dr. Forest Agostinelli received a grant from the SC Commission on Higher Education for the project "Quantifying Vascular Calcification and Predicting Patient Outcome with Synthetic Data, Deep Neural Networks, and Logic Programming"
  • Dr. Ramtin Zand received a grand from ZKFlas Labs Inc. for their project on the "Design and Implementation of Hardware Accelerator for Zero-Knowledge Cryptography"
  • Dr. Homayoun Valafar received several grants from the Health Sciences Center at Prisma Health for the projects: “Analysis of Patient Glycomic Profiles in Search for Breast Cancer Signatures Using Machine Learning Approaches”, “Comprehensive and User-Analytics-Friendly Cancer Patient Database for Physicians and Researchers”, and “Application of Artificial Intelligence (AI) in Predicting the Outcome of Cancer in Patients Using Cancer-Critical Gene Sequences and Clinical Data” co-PI with Anna Blenda.

Faculty Feature: Christian O'Reilly

Christian O’Reilly, a faculty member at the University of South Carolina’s Artificial Intelligence Institute (AIISC) and an assistant professor in the Department of Computer Science and Engineering, had extensive international experiences prior to arriving in Columbia in 2021. He worked in Switzerland on the internationally renowned Blue Brain Project and was postdoctoral fellow in Canada at the University of Montreal and McGill University. He has also completed research in identifying brain differences between neurotypical people and individuals diagnosed with autism spectrum disorder (ASD). Read the rest here.

Amit Sheth: Artificial intelligence, real growth

In February, Amit Sheth, founding director of the Artificial Intelligence Institute of South Carolina, hosted Provost Donna Arnett, Vice President for Research Julius Fridriksson and College of Engineering and Computing Dean Hossein Haj-Haririto show off the institute’s ongoing success. President Michael Amiridis had already visited the institute in October.

Since its inception three and a half years ago, the institute has enjoyed rapid growth, earned significant accolades and fostered multiple partnerships in its efforts to infuse artificial intelligence expertise into the framework of research at South Carolina. Sheth and the five new faculty he helped recruit have secured funding for a growing team of over 40 researchers, including nearly 30 Ph.D. students funded through research grants.  Read the rest of the article here.

USC joins IBM Quantum Hub

USC has joined the IBM Quantum Hub at North Carolina State University. In addition to supporting industry and university partners, the IBM Quantum Hub also focuses on educating the next generation of quantum computing users and developers.

With membership in the Quantum Hub, USC will gain access to over 20 of IBM’s quantum computing systems for commercial use and fundamental research. Facilitated through the Department of Computer Science and Engineering, USC partners (academic, community and industrial) will have full access to the membership. Consequently, the university faculty and students will have the opportunity to develop and test new algorithms for quantum hardware and collaborate on leading-edge experimental efforts.

Students and faculty can request access to the Quantum Hub.

Outstanding Senior Awards

Each year the Faculty of the Department of Computer Science and Engineering (CSE) award four Outstanding Senior Awards. This process is never easy given the many excellent and accomplished students in our program. This year, we have decided that the 2023 Computer Science and Engineering Outstanding Senior Awards go to:

  • Lex Whalen: Computer Science Outstanding Senior Award.
  • Ryan Capron: Computer Information Systems Outstanding Senior Award.
  • Will Duggan: Computer Engineering Outstanding Senior Award.
  • Allison Scott: Computer Engineering SCSPE Award.

All awardees will be honored at the University Awards Day ceremony.

ChatGPT-like LLM-based-AIs Offer Both Opportunities and Risks for Society

ChatGPT has disrupted the narrative around AI and fired everyone’s imagination. Just like iPhone disrupted the market for mobile phones, Google did for search, Tesla did for cars, and Watson did for question-answering (with Jeopardy!), ChatGPT has people at every level of education spectrum trying it out for applications ranging from scientific articles to real-estate to law and business exams to programming, and much more. But technologies are not accepted by just its perfect performance but also a socio-technical ecosystem. For example, a car must drive properly but the legal, education, and standards framework allow a user to trust the enabling environment and confidently drive their vehicle on the roads. Similarly, conventional or new application domains alike, the adoption of chatbots were already hindered by the lack of a supportive socio-technical environment. With easy access of LLM-based tools like ChatGPT, the risk of harm will only increase unless other pillars are quickly built. To benefit society from the potential of LLM based technologies, the path forward is not to scuttle LLM-based tools but to increase investment and augment necessary other pillars for the technologies’ safe and trusted usage for the society.

Read the full article by Dr. Biplav Srivastava, or his online recording.

Protecting against cyberattacks Protecting critical infrastructure through high-assurance security and authorization

But as cybersecurity threats against critical infrastructure increase, innovative and adaptable solutions are necessary for protecting vulnerable components.Computer Science and Engineering Professor Csilla Farkas began a two-year project last September that aims to help implement an adaptive authorization framework for critical infrastructure that is more resilient against cyberattacks than current security solutions.

Read the complete story here.

Undergraduate junior student Daniel Gleaves published his research on deep learning models for new materials discovery

Our computer science junior student Daniel Gleaves from Prof. Jianjun Hu’s group published his research of deep learning algorithms for materials research in Digital Discovery Journal from Royal Society of Chemistry. In this work, he applied semi-supervised deep graph neural networks for material synthesizability and stability prediction. His models can achieve significantly better performance compared to the existing state-of-the-art PU learning methods with the true positive rate increased from 87.9% to 92.9% using 1/49 model parameters. His models can be combined with deep learning based generative material design models from Dr. Hu’s group for large-scale screening of novel functional materials. The accepted manuscript “Materials synthesizability and stability prediction using Semi-supervised teacher-student dual neural network” can be downloaded from here. Daniel was a recipient of USC Magellan Scholarship. Dr. Hu’s machine learning and evolution laboratory (MLEG) has involved dozens of undergraduate students in their cutting-edge research on AI for science and deep learning for materials discovery, which has already led to four journal publications in leading materials science journals. Interested highly motivated students can contact Dr. Hu by email.


New materials discovered in this research

DoD Program Offers Significant Opportunity for Cybersecurity Students

Deadline is February 1 for Cyber Scholarship Program applicants.

Senior computer science major Erin Kremer is the University of South Carolina’s inaugural participant in the Department of Defense Cyber Scholarship Program (DoD CySP). The scholarship is used for recruiting skilled cybersecurity professionals to combat growing threats against the nation’s information systems and infrastructures. Following graduation, students are required to work a minimum of one year for the DoD for each year of scholarship support received.

Read the full article here.

Alumnus Spotlight: Manas Gaur

“It was a very fascinating experience for me, in terms of the collaborations I was able to develop within a short span at USC,” says Dr. Manas Gaur who received a doctorate in computer science in August. Within a year of arriving in Columbia, he was given the opportunity to present his research at the Annual Computing Conference at the SEC Meeting. He was also a part of large team-based National Science Foundation (NSF) and National Institutes of Health (NIH) grants with professors at USC.

Outside of his research, Gaur has tutored high school, undergraduate and graduate students from different backgrounds and institutions. He credits a fellowship at University of Chicago, where he was an Eric and Wendy Schmidt Data Science for Social Good Fellow in 2017, for his interest in giving back. In 2019, he received an AI for Social Good Fellowship from Dataminr Inc.

Read the full article at Artificial Intelligence, real application

AIISC Event Posters and Photos

AIISC's 1st Retreat last Friday was hugely successful. Over 50 in attendance engaged in active discussions over 23 student posters representing a subset of the topics our ~40 researchers work on, attended the panel in which our collaborators shared their views on "AI in your research" and continued conversations over breakfast and lunch.

Please check out the posters and the photos of this vibrant event, and visit our LinkedIn page followed by over 8600 worldwide.

Accurate Human Silhouettes and Body Joints Estimation from Commodity 5G Millimeter-Wave Devices

The need for understanding and perceiving at-home human activities and biomarkers is critical in numerous applications, such as monitoring the behavior of elderly patients in assisted living conditions, detecting falls, tracking the progression of degenerative diseases, such as Parkinson’s, or monitoring recovery of patients’ during post-surgery or post-stroke. Traditionally, optical cameras, IRs, LiDARs, etc., have been used to build such applications, but they depend on light or thermal energy radiating from the human body. So, they do not perform well in occlusion, low light, and dark conditions. More importantly, cameras impose a major privacy concern and are often undesirable for users to install inside their homes.

Now a team of researchers from the Systems Research on X laboratory at the University of South Carolina has designed a monitoring system, called MiShape, based on millimeter-wave (mmWave) wireless technology in 5G-and-beyond devices to track humans beyond-line-of-sight, see through obstructions, and monitor gait, posture, and sedentary behaviors. This system provides an advantage over camera-based solutions since it works even under no light conditions and preserves users’ privacy. By processing mmWave signals and combining them with custom-designed conditional Generative Adversarial Networks (GAN) model, they demonstrated that MiShape generates high-resolution silhouettes and accurate poses of human body on par with existing vision-based systems. 

The findings are reported recently in the ACM Journal on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) in a paper co-authored by UofSC graduate students, Aakriti Adhikari and Hem Regmi, and UofSC faculties of computer science and engineering department, Dr. Sanjib Sur and Dr. Srihari Nelakuditi. It was also recently presented at the highly selective international conference, ACM UbiComp 2022, by Aakriti Adhikari.

In their proposed approach, they first train a deep learning model based human silhouette generator model using mmWave reflection signals from a diverse set of volunteers performing different human poses, activities, etc., and then run the model to predict the silhouette of unknown subjects performing unknown poses, which are not part of the training process. The silhouette can then be used to generate a body skeleton, which can be tracked continuously, even under obstructions or low-light, for monitoring human activities automatically. Furthermore, the system can generalize to different subjects with little to no fine-tuning. 

This research is an example of an emerging paradigm called Sensing for Well-being. It enables ubiquitous sensing techniques so that devices and objects become “truly smart” by understanding and interpreting the ambient conditions and activities with high precision, without relying on traditional vision sensors. “Through experimental observations and deep learning models, we extract intelligence from wireless signals, which, in turn, enable ubiquitous sensing modalities for various human activities and silhouette generation,” says Prof. Sur. The authors are also collaborating with researchers from the Arnold School of Public Health and doctors from the School of Medicine to bring these technologies to practice. Another application of this work is in monitoring human sleep quality and postures with ubiquitous networking devices, such as next-generation wireless routers at home. “We can use mmWave wireless signals to automatically classify, recognize, and log information about sleep posture throughout the night, which can provide insights to medical professionals and individuals in improving sleep quality and preventing negative health outcomes,” Sur says.

The research was supported by the National Science Foundation, under the grants CNS-1910853, MRI-2018966, and CAREER-2144505, and by the UofSC ASPIRE II award.