CSCE 574: Robotics

- 1. Course number and name: CSCE 574: Robotics
- 2. Credit: 3-hrs; Contact: 3 lecture periods of 50 minutes or 2 periods of 75 minutes per week
- 3. Instructor: Jason O'Kane
- Textbook: There are two recommended textbooks for the course:

 a.Gregory Dudek and Michael Jenkin, *Computational Principles of Mobile Robotics*, Second Edition. Cambridge University Press, New York, NY, 2010.
 b.Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun, *Principles of Robot Motion: Theory, Algorithms and Implementations*, MIT Press, Cambridge MA, 2005.
- Specific course information

 a.Catalog description: Design and application of robotic systems; emphasis on mobile robots and
 intelligent machines.

b.Prerequisites: CSCE 211, 212, 240

c.Elective Course

6. Specific goals for the course

a.Specific outcomes of instruction are that students will be able to:

- 1. Describe the components of robot systems.
- 2. Use a robot's work space and configuration space for representation, reasoning, and planning.
- 3. Implement and use algorithms for controlling mobile robots.
- b.As an elective cannot be counted upon in enabling any student outcome.
- 7. Topics covered and approximate weight

Торіс	Approximate Weight						
Introduction	1 hour						
Fundamental problem types	1 hour						
Robot hardware	2 hours						
Locomotion	4 hours						
Control Architectures	2 hours						
Bug Algorithms	2 hours						
Potential functions	2 hours						
High-level planning	2 hours						
Configuration spaces	2 hours						
Roadmaps	3 hours						
Cell decompositions	3 hours						
Player/Stage software	1 hour						

Sampling-based motion planning	2 hours
Localization	2 hours
SLAM	2 hours
Multiple robots	1 hour
Vision	1 hour
Tests	2 hours

Computer Engineering

Relation of Course Outcomes to EAC Student Outcomes*

Course	Student Outcomes											
Outco	(a)	(b)	(c)	(d)	(e)	(f) an	(g)	(h) the	(i) a	(j) a	(k) use	(CE)
mes	apply	design	design	function	identify	understa	commun	broad	recogni	knowled	the	demonst
(CF)	knowled	and	a	on multidiacin	, formula	nding of	icate	educati	tion of	ge of	techniq	rate
	ge 01	experim	system,	linary	te and	professio		on lo underst	need	orary	ues,	knowle
	atics	ents	nent or	teams	solve	ethical	1 y	and the	for	issues	and	discrete
	science,	interpret	process		enginee	responsi		impact	and an	100000	modern	mathem
	and	data	to meet		ring	bility		of	ability		enginee	atics
	engineer		desired		proble			enginee	to		ring	[CE]
	ing		needs		ms			ring	engage		tools	
								solutio	in life-			
								115	learnin			
									g			
									0			
Criteria	a	b	c	d	e	f	g	h	i	j	k	CE
1.												
Describe												
the												
compone												
nts of												
robot												
systems.												
2. Use a												
robot's												
space and												
configura												
tion												
space for												
represent												
ation,												
and												
planning.												
3												
Impleme												
nt and												
use												
algorithm												
s for												
controllin												
g mobile												
robots.												
4.												

5.

* 3 = major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related

Computer Science & Computer Information Systems

Relation of Course Outcomes to CAC Student Outcomes*

Course	Student Outcomes											
Outco	All									C	CIS	
mes	(a)	(b)	c)	(d)	(e) An	(f)	(g)	(h)	(i)	(j) apply	(k)	(j) An
(CS &	apply	analyze	design,	functio	understan	commun	analyz	Recogni	current	mathema	apply	understa
	knowled	a 	implem	n 	ding of	icate	e the	tion of	techniq	tical	design	nd
	ge or	problem,	ent, and	effectiv	protessio	ly with a	and	for for	ues,	roundati	and	processe
	ng and	identify	evaluat	teams	ethical	range of	global	continui	and	algorith	ment	s inai sunnort
	mathem	and	e a	to	legal	audience	impact	ng	tools	mic	principl	the
	atics	define	comput	accomp	responsibi	S	of	professi	necessa	principle	es	informat
	appropri	the	er-	lish a	lities		compu	onal	ry for	s, and		ion
	ate to	computi	based	commo			ting	develop	comput	CS		systems
	the	ng	system,	n goal			on	ment	ing	theory		environ
	disciplin	require					society		practic			ment.
	e	ments							e			
		• • •										
Criteria	9	h		d		f	σ	h	i	i	ŀ	i
	a	U		u	C	1	g	11	1	J	к	J
I.												
Describe												
compone												
nts of												
robot												
systems.												
2. Use a												
robot's												
work												
space and												
configura												
tion space												
101 represent												
ation												
reasoning												
, and												
planning.												
3.												
Implemen												
t and use												
algorithm												
s for												
controllin												
g mobile												
100015.												
4. -												
5.												

* 3 = major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related