CSCE 567: VISUALIZATION TOOLS

Catalog Description:

567—**Visualization Tools**. (3) (Prereq: CSCE 145 or 206 or 207) Scientific visualization tools as applied to sampled and generated data; methods for data representation and manipulation; investigation of visualization techniques.

Prerequisite(s) By Topic:

Introductory programming and data structures

Textbook(s) and Other Required Material:

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, *Readings in Information Visualization: Using Vision to Think*, Morgan Kaufmann, 1999.

Computing Platform: Unix, Windows XP

Course Objectives: {Assessment Methods Shown in Braces}

- 1. Understand the potential uses of visualization tools in data analysis and presentation {presentations, reviews, discussions}
- 2. Use visualization tools in data analysis {projects}

Topics Covered:

- 1. Space: ID, 2D, 3D, >3D (6 hours)
- 2. Space: Trees (3 hours)
- 3. Space: Networks (3 hours)
- 4. Interaction: Queries (6 hours)
- 5. Interaction: Analysis (6 hours)
- 6. Focus: Visual Transfer Functions (6hours)
- 7. Document Visualization (6 hours)
- 8. Workspace (6 hours)

Laboratory Projects and Other Student Work:

Students complete several projects, at least one of which is substantive. They also review, present, and discuss research papers.

Difference between Undergraduate and Graduate Work:

Graduate students have more (or longer) presentations. They also complete more complicated projects.

Syllabus Flexibility: High. The instructor may select the textbook and projects.

Relationship of Course to Program Outcomes:

The contribution of each course objective to meeting the program outcomes is indicated with the scale:

3 = major contributor, 2 = moderate contributor, 1 = minor contributor. Blank if not related.

	Program Outcomes										
Course Objectives	1. Logic & Math	 Computing Fundamentals 	 Apply Computing Principles 	4. Work on teams	5. Communicate Effectively	6. Liberal arts & Soc. Sciences	7. Basic Science and Lab Procedures	8. Learn New Tools & Processes	 Employed upon Graduation 	10. Application Area	11. Electronics and Digital Sys Design
1. Understand the potential uses of visualization tools			3	1	3			3		1	
2. Use visualization tools in data analysis			3	1	3			3		1	

Estimated Computing Category Content (Semester hours):

Area	Core	Advanced	Area	Core	Advanced
Algorithms		1	Data Structures		1
Software			Programming		
Design		1	Languages		
Computer					
Architecture					

Estimated Information Systems Category Content (Semester hours):

Area	Core	Advanced	Area	Core	Advanced
Hardware and			Networking and		
Software		1	Telecommunications		
Modern			Analysis		
Programming			and		1
Language			Design		
Data			Role of IS in an		
Management		1	Organization		
Quantitative			Information Systems		
Analysis			Environment		

Oral and Written Communication: None

Social and Ethical Issues: None

Theoretical Content:

Some use of statistics and mathematical models in implementing and evaluating visualization tools

Analysis and Design: Visualization projects using existing tools

Class/Laboratory Schedule: Lecture: 3 periods of 50 minutes or 2 periods of 75 minutes per week

Course Coordinator: John Rose

Modification and Approval History:

Initial description, April 20, 2001 Modified June 2005 by Caroline Eastman using course materials from John Rose