CSCE 555 - Algorithms in Bioinformatics

- 1. CSCE 555 Algorithms in Bioinformatics
- 2. Credit: 3-hrs; Contact: 3 lectures of 50 minutes each or 2 lectures of 75 minutes each per week
- 3. Instructor Dr. Jianjun Hu
- 4. Textbook(s) and Other Required Material: Munindar P. Singh and Michael N. Huhns, *Service-Oriented Computing*, Wiley & Sons, Inc., 2005.
 - a. The text will be supplemented with research papers.
 - b. All necessary software will be available for use on CSE laboratory computers or for free download for academic purposes.
- 5. Specific Course Information
 - Catalog Description: Concepts, algorithms and tools for important problems in Bioinformatics, including nucleotide and amino acid sequence alignment, DNA fragment assembly, phylogenetic reconstruction, and protein structure visualization and assessment.
 - b. Prerequisites: CSCE 350
 - c. CSCE 5xx elective
- 6. Specific Goals for the Course
 - a. LEARNING OUTCOMES: Specific outcomes of instruction are that students will be able to demonstrate mastery of:
 - i. Foundations of molecular biology
 - ii. Gene finding; Gene/protein function prediction
 - iii. Algorithms for sequence pattern recognition
 - iv. Phylogenetic analysis
 - b. As an elective this course cannot be counted upon to contribute to the attainment of any student outcome.
- 7. Topics Covered:
 - a. Introduction to DNA, RNA, proteins and central dogma of molecular biology
 - b. Sequence alignment algorithms and sequence database retrieval
 - c. Gene finding: how to find a disease gene?
 - d. Gene/protein function prediction: who does what?
 - e. Hidden Markov Models for sequence pattern recognition: math talks
 - f. DNA regulatory motif analysis: How the billions of cells are programmed to work?
 - g. Phylogenetic analysis: trace the history of human being
 - h. Whole genome comparison: How different between you and chimpanzee?
 - i. Introduction to Structural bioinformatics: protein folding

- j. Microarray based Gene expression analysis: the real story of cellsk. Case studies: find the bad genes, predict the diseases

Difference between Undergraduate and Graduate Work:

Graduate students are assigned more difficult problems and graded on a different scale than undergraduates.

Syllabus Flexibility: High.

Modification and Approval History:

Initial description ... Revised June 2011 by Jianjun Hu