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Bayesian Filter

e Estimate state x from data Z
— What is the probability of the robot being at x?

* x could be robot location, map information, locations of
targets, etc...

* Z could be sensor readings such as range, actions,
odometry from encoders, etc...)

* Thisis a general formalism that does not depend on
the particular probability representation

* Bayes filter recursively computes the posterior

distribution:
Bel(x;) =P(x; | Z;)
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Example of a Parameterized Bayesian Filter:
Kalman Filter

Kalman filters (KF) represent posterior belief by a

Gaussian (normal) distribution

A 1-d Gaussian An n-d Gaussian
distribution is given by: distribution is given by:

~(x=p1)” 1 Lm0 = (x-p0)
P(x) = I 20° P(x) = e 2
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Kalman Filter : a Bayesian Filter

N
77

Initial belief Bel(x,) is a Gaussian distribution
— What do we do for an unknown starting position?

State at time t+1 is a linear function of state at time t:

X, =FIx +Bu, +¢

[+ t(action)

Observations are linear in the state:

o, =Hx +¢

t(observation)

Error terms are zero-mean random variables which are normally distributed

These assumptions guarantee that the posterior belief is Gaussian
— The Kalman Filter is an efficient algorithm to compute the posterior

— Normally, an update of this nature would require a matrix inversion (similar to a
least squares estimator)

— The Kalman Filter avoids this computationally complex operation
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The Kalman Filter

e Motion model is Gaussian...
e Sensor model is Gaussian...

* Each belief function is uniquely characterized by its
mean u and covariance matrix X

 Computing the posterior means computing a new
mean w and covariance 2 from old data using
actions and sensor readings

* What are the key limitations?

1) Unimodal distribution
2) Linear assumptions
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Kalman, 1960

The Kalman Filter

* Linear process and measurement models

* Gaussian noise (or white )
e (Gaussilian state estimate
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* Process model is
X, = Axt—l + But—l +4,_,

* Measurement model is z = Hx, +7

Images courtesy of Maybeck, 1979
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What we know...

What we don’t know...

We know what the control inputs of our process are

— We know what we’ve told the system to do and have a model for what the
expected output should be if everything works right

We don’t know what the noise in the system truly is
— We can only estimate what the noise might be and try to put some sort of upper

bound on it
When estimating the state of a system, we try to find a set of
values that comes as close to the truth as possible

— There will always be some mismatch between our estimate of the system and the
true state of the system itself. We just try to figure out how much mismatch there
is and try to get the best estimate possible
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Minimum Mean Square Error

Reminder: the expected value, or mean value, of a
Continuous random variable x is defined as:

E[x] =f xp(x)dx
Minimum Mean Square Error (MMSE)
What is the mean of this distribution?  P(x|Z)

This is difficult to obtain exactly. With our approximations,
we can get the estimate Xx

..suchthat E[(x—X)?|Z,] is minimized.
According to the Fundamental Theorem of Estimation Theory

this estimate is: 3
is estimate is LMMSE _ E[x|Z] =f xp(x| Z)dx
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Fundamental Theorem of Estimation Theory

 The minimum mean square error estimator equals the expected (mean) value of x
conditioned on the observations Z

 The minimum mean square error term is quadratic:

E[(x—)%)z |Zt]

— Its minimum can be found by taking the derivative of the function w.r.t x and setting that

value to 0.
V(E[(x-%)"1Z]) =0

* Itisinteresting to note that when they use the Gaussian assumption, Maximum A
Posteriori estimators and MMSE estimators find the same value for the parameters.

— This is because mean and the mode of a Gaussian distribution are the same.

A

M.  CSCE-774 Robotic Systems o



Kalman Filter Components

(also known as: Way Too Many Variables...)

Linear discrete time dynamic system (motion model)

State Cont?l input Process noise

IS

Xl = E'xt + Btut + Gtwt

State transi{o'n Control input ~Noise input
function function function with covariance Q

Measurement equation (sensor model)
Sensor reading S}:ate Sensor noise with covariance R

Zt+1 = t+1'xt+1 + nt+1

Sensor fu nct/i(;n Note:Write these down!!!

CSCE-774 Robotic Systems 10



Computing the MMSE Estimate of the State
and Covariance

Given a set of measurements: Z_  ={z.i<t+1}

According to the Fundamental Theorem of Estimation, the state
and covariance will be: RME _ E x| Z ]

P = E[(x-%)"|Z,,]
We will now use the following notation:

)’(\: = E:xt+l | Zt+1]

t+1j+1
itlt =E[x, | Z,]
X =E:xt+1 |Zt]

t+1t

,\\’-\\\Q/:
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Computing the MMSE Estimate of the
State and Covariance

What is the minimum mean square error estimate
of the system state and covariance?

t+1|t =F X X+ Bu, Estimate of the state variables

Zyoe = H X, Estimate of the sensor reading
T . .
B =F EVF +G,0.G,” Covariance matrix for the state
T . .
Sy =H,,F,,H, +R,, Covariance matrix for the sensors
CSCE-774 Robotic Systems 12



At last! The Kalman Filter...

S

za

=)
=)

Propagation (motion model):

X, =X, + Bu,
T
B, = F])t/tF +G,0,G

Update (sensor model):

2t+1 = Ht+15et+1/t
rt+1 = Zt+1 - 2t+1
S =H, B, H, 1T +R,.,
Kt+1 Pt+1/th+1 S
£t+l/t+1 t+1/t + Kt+1 t+1
I)t+1/t+1 = I)t+1/t - I)t+1/th+1 St+1_1Ht+1I)t+1/t

CSCE-774 Robotic Systems
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...but what does that mean in English?!?

Propagation (motion model):

t+1/t = F'x X, + B u, - State estimate is updated from system dynamics
T . .
- Uncertainty estimate GROWS
Pt+1/t FPt/tF + GtQth ty

Update (sensor model):

— H;+1 ;CHW - Compute expected value of sensor reading
Vool =2, — 2t+1 - Compute the difference between expected and “true”
Sm — Ht+1Pt+1/tH 1T + Rt+1 - Compute covariance of sensor reading
Kt+1 Pm/t[{t+1 S - Compute the Kalman Gain (how much to correct est.)
fcz+1/¢+1 t+1/t + Kt+1 t+1 - Multiply residual times gain to correct state estimate
P...=P,,,,—-P, H,, S _lHt+1]Dt+1/t - Uncertainty estimate SHRINKS

X
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Kalman Filter Block Diagram
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Example 1: Simple 1D Linear System

Given: F=G=H=1, u=0
Initial state estimate = 0
Linear system:

1 =X W Unknown noise
Zip =X T, parameters
Propagation: Update:
551‘+1/t = fcr/t Zi = fcz+1/z
B, =h5,+0, Voot = Zi — Xy
Sia1 = Pt+1/t + R,
K= Pz+1/tSz+1
‘)’et+1/t+1 Xporse + Kt
B = Pz+1/tSr+1 t+1/t

,\\’-\\\Q/:
@ CSCE-774 Robotic Systems

16



State Estimate

— FReal

— — Systemn Model
- Measurements
— - - KF Estimate
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State Estimation Error vs 3o Region of Confidence

1
Estimate Error
— — Upper bound
— — Lower bound
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Sensor Residual vs 30 Region of Confidence
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Kalman Gain and State Covariance

[— Kalm gain
—— Covwvariance
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Example 2: Simple 1D Linear System with
Erroneous Start

Given: F=G=H=1, u=cos(t/5)
Initial state estimate = 20

X,,, =x,+cos(t/5)+w,
Linear system: z  =x. 4+n g Unknown noise
parameters
Propagation: Update: (no change)
X1y =X, +cos(/5) Zyo = X100

B, =5,+0, Voot = Zyo1 — X1

S = Pt+1/t + R,

K,.= })t+1/tSt+l_1

X + K

t+1/t+1 t+1/z‘ t+1 t+1

2 .
0 CSCE-774 Robotic Systems Projin =P = BiSi” B 21



State Estimate

FReal
— — System Model
- Measurements
— - - KF Estimate
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State Estimation Error vs 30 Region of Confidence

Estimate Error
— — Upper bound
— — Lower bound
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Sensor Residual vs 30 Region of Confidence
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Kalman Gain and State Covariance

_— alman gain
—— Covariance

\_
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Some observations

* The larger the error, the smaller the effect on the final state
estimate

— If process uncertainty is larger, sensor updates will dominate state
estimate

— If sensor uncertainty is larger, process propagation will dominate state
estimate

* Improper estimates of the state and/or sensor covariance may
result in a rapidly diverging estimator

— As arule of thumb, the residuals must always be bounded within a +30
region of uncertainty

— This measures the “health” of the filter
* Many propagation cycles can happen between updates

o) CSCE-774 Robotic Systems 26



Using the Kalman Filter for Mobile Robots

* Sensor modeling

— The odometry estimate is not a reflection of the robot’s control
system is rather treated as a sensor

— Instead of directly measuring the error in the state vector (such as
when doing tracking), the error in the state must be estimated

— This is referred to as the Indirect Kalman Filter

 State vector for robot moving in 2D
— The state vector is 3x1: [x,y,0]

— The covariance matrix is 3x3

* Problem: Mobile robot dynamics are NOT linear

N

@’@n CSCE-774 Robotic Systems 57



Problems with the
Linear Model Assumption

Many systems of interest are highly non-linear,
such as mobile robots

In order to model such systems, a linear process
model must be generated out of the non-linear
system dynamics

The Extended Kalman filter is a method by which
the state propagation equations and the sensor
models can be linearized about the current state
estimate

Linearization will increase the state error residual
because it is not the best estimate

CSCE-774 Robotic Systems 28



Approximating Robot Motion Uncertainty
with a Gaussian

29
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Linearized Motion Model for a Robot

Y From a robot-centric X =V
y X perspective, the velocities V. =
\B look like this: 4 = w,
0 .
From the global x, =V, cosg,
perspective, the | y, =V sing,
> velocities look like this: -
G X ¢ =,
The discrete time state X=X+, +w, ) cosg ~ Problem! We don’t know
estimate (including noise) . ] .~ linear and rotational
looks like this: Vi =Y, +(V, +wy, )otsing, velocity errors. The state
N estimate will rapidly
. s = @+ (@ + W, )l diverge if this is the only

@@ CSCE-774 Robotic Systems source of information! 30



Linearized Motion Model for a Robot

Now, we have to compute the covariance matrix propagation
equations.

The indirect Kalman filter derives the pose equations from the
estimated error of the state:  «x,,,-%,, =%,

yt+1 yt+1 = yt+1
¢t+1 - ¢t+1 = ¢t+1

In order to linearize the system, the following small-angle
assumptions are made: cos =1

~

sin55¢

@f@ CSCE-774 Robotic Systems 31



Calculation of 4.,

¢t+1 = ¢t+1 _ ¢t+1
=@ + w,Af - ¢ft —(w, +w, At
= % —-w_ At

'\V"\\\Q/:
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m~~

xt+1

Calculation of ;" _ =~ 5

= X1 — X1

=x, +v,Atcos(¢)—x, — (v, —w,)At COS(¢2)
= x, — X, +v,Atcos(@,) — v,At cos(¢,) + w,At cos(¢,)
= X, +v,Atcos(@, + @) —v,Atcos(g,) + w,At cos(¢,)
=X + vtAt[cos(%) Cos(¢?t) — Sin(%) sin(¢?, )] —v,At COS(&) +w, At COS(&z)
=X, +v,At cos(¢?t) — vtAt¢7; sin(¢?,) WAV COS(¢2) +w,At COS(&)
= % —v,Atg, sin(g,) + w, At cos(d,)
Vet = Ve = Vin
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Linearized Motion Model for a Robot

From the error-state propagation equation, we can obtain the
State propagation and noise input functions Fand G:

'%.,1 [1 0 -VArsing]|[X] [-Atcos¢, 0

A w
YV.al=10 1 VAtcosg ||y, |+|—-Atsing O l V]
~ ~ w
.1 [0 0 1 &, 0 AL

X, =FX +GW,

t+1

From these values, we can easily compute the standard covariance
propagation equation:

T T
- FR,F +GOgG,

t/t" t

P

t+1/¢

@ CSCE-774 Robotic Systems 34



Covariance Estimation

Y @@ @ N

==‘l;:‘Xr%+1;X?Z;1]
=E[(FX, +Gw)(FX, + Gtwt)T]
- FE[X X'F" + GE[ww'1G'

T T
- FP,F +GOG,

t/t" t

P

r+1/t¢

where

Qt =E[W1W1T]= | ’

\\//

o) CSCE-774 Robotic Systems
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Alternative Calculation

a=JS(X,w)
X t+1F(X - X))+ F.w,
)’Zt X . F(X)+F.w,
1 0 —vArsin(g)
of .
F, AL 0 1 vAtcos(g)
0 0 1
_Atcos(¢?t) 0
o A
F = — s, Atsin(¢) 0
0 At

,\\’-\\\Q/:
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Propagation

* Finally, for a mobile robot EKF propagation step we

have:

N

X, =X +V"o cos¢ft
Vi =Y,V 0tsin ¢?z

¢?t+1 = ¢ft +w," ot

P =FR,F, +GOG,

where :
1 0 -V Atsing]
F =10 1 VtAtcos¢?
0 O 1

CSCE-774 Robotic Systems

T

— Afcos g,
— Atsin ¢,

0

0

0

— At

37



Sensor Model for a Robot with a Perfect Map

From the robot, the measurement

looks ke this: =[p]+[np]= JG, - F+(, -0 F) '+lnp]
- e 7 1 R P e T
x e L =[x vy !
V., XX
z P = ((xLz_xr)z-l-(yLz_yr)z)
_('xLi_‘xr) _(yLi_yr) O-
g _ 0 12
G ’ T2 -0 |~ -x,) »
o’ p°

_\"_\\\Z.‘
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Update

VaN

Fr=<—2%
S=H*P*H" +R
K=P*H"*S™
X, il + K *r
P=(I-K*H)*P*(I-K*H) +K*R*K"
P+P'
2

o) CSCE-774 Robotic Systems

= Xy/el

P =

X



See Matlab Examples

%
@% CSCE-774 Robotic Systems
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Sensor Model for a Robot with a Perfect Map

A x n
Y From the robot, the Liw x
measurement looks Zoa = |V, | T
like this: D, | |7]
From a global
perspective, the
measurement looks
> like:
G cosg,, -sing,, O0]/x, -x,, n,

i = Sil’l ¢t+1 Cos¢t+1 0 yLm - yt+1 + ny
i 0 0 1_ ¢Lt+1 @, I
The measurement equation is nonlinear and must also be linearized!

@ CSCE-774 Robotic Systems 41



Sensor Model for a Robot with a Perfect Map

Now, we have to compute the linearized sensor function. Once
again, we make use of the indirect Kalman filter where the error in

the reading must be estimated.

In order to linearize the system, the following small-angle
assumptions are made:  cos4 =1

~

Sm$s¢

The final expression for the error in the sensor reading is:

-}JLM - - Cos¢t+l o SiIl ¢t+1 - SiIl ¢,+1 (xL - )%t+1) + COS¢t (yL - j>t+1) --ffml - -nx -
j\;L’” =| sing., —cosg,, —cosg, (x, - fcml) -smg,(y, - )A/z+1) j7t+l +|n,
¢Lt+l O O - 1 _¢t+l i _n¢ i

;:&.
42
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Updating the State Vector

2.5

-1}

-1.5~-

1 1 1 1 1 1 1 1 1 1 1 1 1

-5 -1 =05 0 0.5 1 15 2 25 3 3.5 -0.5 0 0.5 1 15 2 2.5

csce-774 roboriPEQP@gation only Propagation and update
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Extended Kalman Filter for SLAM

* State vector
— Expanded to contain entries for all landmarks

positions: X =[X§ xr ... X7 ]’
— State vector can be grown as new landmarks are
discovered

— Covariance matrix is also expanded

PRR PRLl T PRLN
I)LIR })LILI T })LILN
PLNR PLNL1 T PLNLN
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Extended Kalman Filter for SLAM

* Kinematic equations for landmark
propagation

X=X+ + Wy, )or cosqgt
J’>t+1 = )A/t +(Vt +WV,)&Sin¢t

D1 =@, + (wt T W, )ot

Xl = Xy
Vi = Vi
¢Lit+l = ¢L,.t

A
()
iy

@ CSCE-774 Robotic Systems
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Extended Kalman Filter for SLAM

* Sensor equations for update:
x-=|xr xr . X' .. X7|
H=|H, 0 - 0 H, 0 - O]

* Very powerful because covariance update
records shared information between landmarks
and robot positions

2

A/
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EKF for SLAM

| ®)

_1 1 1 1 1 1

S

4
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Enhancements to EKF

* Jterated Extended Kalman Filter

State and
covariance update
>V = Z 2y
S = Ht+1})k+1/kHil +R,,
K, =P, H S
Xk+1/k+1 = Ak+1/k + K, 17
Pk+1/k+1 = Pk+1/k Kt+1St+1KT

Iterate state update
equation until

convergence
@:@ CSCE-774 Robotic Systems
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Enhancements to the EKF

* Multiple hypothesis tracking
— Multiple Kalman filters are used to track the data

— Multi-Gaussian approach allows for representation of
arbitrary probability densities

— Consistent hypothesis are tracked while highly inconsistent
hypotheses are dropped

— Similar in spirit to particle filter, but orders of magnitude
fewer filters are tracked as compared to the particle filter

CSCE-774 Robotic Systems
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