

CSCE 774 ROBOTICS SYSTEMS

Coordinate Systems

Ioannis Rekleitis

Position Representation

 Position representation is: L ${}^{A}P = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$ ^{A}P X

Orientation Representations

LB

 Describes the rotation of one coordinate system with respect to another

KB

Rotation Matrix

- Write the unit vectors of *B* in the coordinate system of *A*.
- Rotation Matrix:

AZB

Properties of Rotation Matrix

$${}^{B}_{A}R = {}^{A}_{B}R^{T}$$
$${}^{A}_{B}R = {}^{A}_{B}R = {}^{A}_{3}$$
$${}^{A}_{B}R = {}^{B}_{A}R^{-1} = {}^{B}_{A}R^{T}$$

Coordinate System Transformation

$$M = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0_{3\times 1} & 1 \end{bmatrix}$$

where R is the rotation matrix and T is the translation vector

Rotation Matrix

• The rotation matrix consists of 9 variables, but there are many constraints. The minimum number of variables needed to describe a rotation is three.

Rotation Matrix-Single Axis

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Fixed Angles

• One simple method is to perform three rotations about the axis of the original coordinate frame:

– X-Y-Z fixed angles

${}^{A}_{B}R(\theta,\phi,\psi) = R_{z}(\psi)R_{y}(\phi)R_{x}(\theta)$ $= \begin{bmatrix} \cos(\psi)\cos(\phi) & \cos(\psi)\sin(\phi)\sin(\theta) - \sin(\psi)\cos(\theta) & \cos(\psi)\sin(\phi)\cos(\theta) + \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\phi) & \sin(\psi)\sin(\phi)\sin(\theta) + \cos(\psi)\cos(\theta) & \sin(\psi)\sin(\phi)\cos(\theta) + \cos(\psi)\sin(\theta) \\ -\sin(\phi) & \cos(\phi)\sin(\theta) & \cos(\theta)\cos(\psi) \end{bmatrix}$

• There are 12 different combinations

Inverse Problem

• From a Rotation matrix find the fixed angle rotations:

$$\begin{cases} {}^{A}_{B}R(\theta,\phi,\psi) = {}^{A}_{B}R \Rightarrow \\ \left[\cos(\psi)\cos(\phi) & \cos(\psi)\sin(\phi)\sin(\phi) - \sin(\psi)\cos(\theta) & \cos(\psi)\sin(\phi)\cos(\theta) + \sin(\psi)\sin(\theta) \\ \sin(\psi)\cos(\phi) & \sin(\psi)\sin(\phi)\sin(\theta) + \cos(\psi)\cos(\theta) & \sin(\psi)\sin(\phi)\cos(\theta) + \cos(\psi)\sin(\theta) \\ -\sin(\phi) & \cos(\phi)\sin(\theta) & \cos(\theta)\cos(\psi) \\ \end{array} \right] = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

thus:

$$\phi = A \tan 2 \left(-r_{31}, \sqrt{\left(r_{11}^2 + r_{21}^2\right)} \right)$$

$$\psi = A \tan 2 \left(\frac{r_{21}}{\cos(\phi)}, \frac{r_{11}}{\cos(\phi)} \right)$$

$$\theta = A \tan 2 \left(\frac{r_{32}}{\cos(\phi)}, \frac{r_{33}}{\cos(\phi)} \right)$$

• **ZYX**: Starting with the two frames aligned, first rotate about the Z_B axis, then by the Y_B axis and then by the X_B axis. The results are the same as with using XYZ fixed angle rotation.

• There are 12 different combination of Euler Angle representations

Pitch

Yaw

Euler Angle concerns: Gimbal Lock

Using the **ZYZ** convention •(90°, 45°, -105°) \equiv (-270° , -315° , 255°) •(72°, 0°, 0°) \equiv (40°, 0°, 32°)

• $(45^\circ, 60^\circ, -30^\circ) \equiv (-135^\circ, -60^\circ, 150^\circ)$

multiples of 360° singular alignment (Gimbal lock) bistable flip

Axis-Angle Representation

• Represent an arbitrary rotation as a combination of a vector and an angle

Quaternions

- Are similar to axis-angle representation
- Two formulations
 - Classical
 - Based on JPL's standards

W. G. Breckenridge, "Quaternions - Proposed Standard Conventions," JPL, Tech. Rep. INTEROFFICE MEMORANDUM IOM 343-79-1199, 1999.

- Avoids Gimbal lock
- See also: M. D. Shuster, "A survey of attitude representations," Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439–517, Oct.–Dec. 1993.

Quaternions

	Classic notation	JPL-based
	$\overline{q} = q_4 + q_1 i + q_2 j + q_3 k$	$\overline{q} = q_4 + q_1 i + q_2 j + q_3 k$
Vector Notation	$i^2 = j^2 = k^2 = ijk = -1$	$i^2 = j^2 = k^2 = -1$
	ij = -ji = k, $jk = -kj = i$, $ki = -ik = j$	-ij = ji = k, -jk = kj = i, -ki = ik = j
	$\overline{q} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}, q_0 = \cos(\theta/2), \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} \sin(\theta/2)\cos(\beta_x) \\ \sin(\theta/2)\cos(\beta_y) \\ \sin(\theta/2)\cos(\beta_z) \end{bmatrix}$	$\overline{q} = \begin{bmatrix} \mathbf{q} \\ q_4 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} k_x \sin(\theta/2) \\ k_y \sin(\theta/2) \\ k_z \sin(\theta/2) \end{bmatrix}, q_4 = \cos(\theta/2)$
		$\ \overline{q}\ = 1, \overline{q} \otimes \overline{p}, \mathbf{q} \times \mathbf{p}, \overline{q}_I, \lfloor \mathbf{q} \times \rfloor$

See also: N. Trawny and S. I. Roumeliotis, "Indirect Kalman Filter for 3D Attitude Estimation," University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep. 2005-002, March 2005.

Coordinate frames on PR2

