

CSCE 774 ROBOTICS SYSTEMS

Coverage

Ioannis Rekleitis

Coverage

- A task performed quite often in everyday life:
 - Cleaning
 - Painting
 - Plowing/Sowing
 - Tile setting
 - etc.

Humanitarian Demining

Motivation

CSCE 774: Robotic Systems

Lawn Mowing

Motivation Vacuum Cleaning

Robotic Coverage

- More than 5 million Roombas sold!
- Automated Car Painting

Roomba Costumes

From: http://www.myroombud.com/

- First Distinction
 - Deterministic **Demining**
 - Random Vacuum Cleaning
- Second Distinction
 - Complete
 - No Guarantee
- Third Distinction
 - Known Environment
 - Unknown Environment

Non-Deterministic Coverage

- Complete Random Walk
- Ant Robotics
 - Leave trail
 - Bias the behavior towards or away from the trails

Ant Robotics: I. Wagner, IBM & Technion

S. Koenig Ant Robotics, terrain coverage

Deterministic Coverage

- Complete Algorithm
- Guarantees Complete Coverage

Cell-Decomposition Methods

Two families of methods:

Exact cell decomposition
 The free space F is represented by a collection of
 non-overlapping cells whose union is exactly F

 Examples: trapezoidal and cylindrical
 decompositions

BOUSTROPHEDON CELLULAR DECOMPOSITION

The way of the Ox!

Ioannis Rekleitis

Boustro nobedp Single Robot Coverage

- Deterministic algorithm
- Guarantee of completeness
- Sensor based
- Unknown Environment

•Seed spreader algorithm: Lumelsky et al, "Dynamic path planning in sensor-based terrain acquisition", IEEE Transactions on Robotics and Automation, August 1990.

•Boustrophedon algorithm: Choset and Pignon, "Coverage path planning: The boustrophedon cellular decomposition", International Conference on Field and Service Robotics,1997.

Single Robot Coverage

Reeb graph Vertices: Critical Points Edges: Cells

Critical Points

• There are four types of critical points:

Forward Concave critical point
 Reverse Concave critical point
 Reverse Convex critical point
 Forward Convex critical point

Optimal Coverage

- Find an order for traversing the Reeb graph such that the robot would not go through a cell more times than necessary
- Solution
- Use the Chinese Postman Problem

Chinese Postman Problem

 The Chinese postman problem (CPP), is to find a shortest closed path that visits every edge of a (connected) undirected graph. When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution.

See: J. Edmonds and E.L. Johnson, Matching Euler tours and the Chinese postman problem, Math. Program. (1973).

Offline Analysis Algorithm

Offline Analysis Algorithm

- Input: binary map separating obstacle from free space
- Boustrophedon Cellular Decomposition (BCD)

Offline Analysis Algorithm (cont.)

- Chinese Postman Problem
 - Eulerian circuit, i.e. *single* traversal through all cells (edges)

Per-Cell Coverage Planner

- Seed Spreader: piecewise linear sweep lines
- Footprint width

Coverage Direction Alignment

Static alignment methods

Alignment with average wind heading (pre-flight) CSCE 774: Robotic Systems

Non-Holonomic Robot Controller

CSCE 774: Robot c Systementroller

Distance (m)

Greedy Waypoint

Distance (m)

Curlicue Controller

Chinese Postman Problem

- The solution of the CPP guarantees that no edge is doubled more than once
- That means some cells have to be traversed twice
- Cells that have to be traversed/covered are divided in

Double Coverage of a Single Cell

• By dividing the cell diagonally we control the beginning and end of the coverage

Double Coverage of a Single Cell

• By dividing the cell diagonally we control the beginning and end of the coverage

Optimal Coverage Algorithm

- Given a known environment:
 - Calculate the Boustrophedon decomposition
 - Construct the Reeb graph
 - Use the Reeb graph as input to the Chinese Postman Problem (CPP)
 - Use the solution of the CPP to find a minimum cost cycle traversing every edge of the Reeb graph
 - For every doubled edge divide the corresponding cell in half
 - Traverse the Reeb graph by covering each cell in order

Traversal order of the Reeb graph

Example: Boustrophedon Decomposition

Example: Reeb Graph

CSCE 774: Robotic System

Example: CPP solution

CSCE 774: Robotic System

CSCE 774: Robotic System

CSCE 774: Robotic System

CSCE 774: Robotic System

CSCE 774: Robotic System

CSCE 774: Robotic System

Example 2 Boustrophedon Decomp.

UAV-Optimal Coverage

UAV-Optimal Coverage

100 m

•UAVs non-holonomic constraints require special trajectory planning

•120 Km of flight during coverage

Image Mosaic

Multi-UAV

Video at ICRA 2011

Coverage of Known Worlds

From: X. Zheng and S. Koenig. Robot Coverage of Terrain with Non-Uniform Traversability. In Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pg. 3757-3764, 2007

STC

Cell decomposition for Path Planning

Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Trapezoidal decomposition

Optimality

• Obtaining the *minimum* number of convex cells is NP-complete.

15 cells

Trapezoidal decomposition is exact and complete, but not optimal -- even among convex subdivisions.

9 cells

there may be more detail in the world than the task needs to worry about...

Cell-Decomposition Methods

Two families of methods:

- Exact cell decomposition
- Approximate cell decomposition
 F is represented by a collection of nonoverlapping cells whose union is contained in F Examples: quadtree, octree, 2ⁿ-tree

• Approximate cell decomposition

recursively subdivides each *mixed* obstacle/free (sub)region into four quarters...

• Approximate cell decomposition

recursively subdivides each *mixed* obstacle/free (sub)region into four quarters...

• Approximate cell decomposition

recursively subdivides each *mixed* obstacle/free (sub)region into four quarters...

• Approximate cell decomposition

Again, use a graph-search algorithm to find a path from the start to goal

is this a complete path-planning algorithm? i.e., does it find a path when one exists ?

Octree Decomposition

