

CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Introduction

Ioannis Rekleitis

Why Image Processing?

- Who here has a camera?
- How many cameras do you have
- Point where computers fast/cheap
- Cameras become omnipresent
- Deep Learning...

Long time ago

https://en.wikipedia.org/wiki/Cave_painting#/media/File:Rhinos_Chauvet_Cave.jpg CSCE 590: Introduction to Image Processing

From early analysis

From: https://www.vox.com/videos/2019/5/31/18647684/cuban-missile-crisis-photo-prevented-nuclear-war

https://www.youtube.com/watch?v=pW6nZXeWlGM

Generative Adversarial Networks

Input Image

Predicted Image

From: https://towardsdatascience.com/horse-to-zebra-cycle-gan-in-tensorflow-2-0-d5ad979d0314

Zebras to Horses

From: https://towardsdatascience.com/cyclegan-learning-to-translate-images-without-paired-training-data-5b4e93862c8d

Major Topics Covered in Class

- image acquisition
- digital image representation
- Image enhancement
- Image restoration
- Color image processing
- Image compression
- Image segmentation
- Morphological image processing

Human Perception VS Machine Vision

Limited vs entire EM spectrum

http://www.kollewin.com/blog/electromagnetic-spectrum/

Image Acquisition and Representation

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Examples

2. Cardiac CT

3. Fetus Ultrasound

4. Satellite image

5. IR image

1 and 3. http://en.wikipedia.org

- 2. http://radiology.rsna.org
- 4. http://emap-int.com
- 5. http://www.imaging1.com

CSCE 590: Introduction to Image Processing

Image Representation

Discrete representation of images

- we'll carve up image into a rectangular grid of pixels P[x,y]
- each pixel p will store an intensity value in [0 1]
- •0 →black; 1 →white; in-between →gray
- •Image size *m* by n →(*mn*) pixels

Color Image

Video: Frame by Frame

•30 frames/second

CSCE 590: Introduction to Image Processing

Applications of Digital Image Processing

- Digital cameras, portable devices
- Photoshop
- Human computer interaction
- Medical imaging for diagnosis and treatment
- Surveillance
- Aerial Drones
- Autonomous Cars
- Convolutional Neural Networks
- Virtual/Augmented Reality
- •
- Fast-growing market!

Image Enhancement

CSCE 590: Introduction to Image Processing

Image Restoration

Image Compression

• \rightarrow Video compression

Image Segmentation

Microsoft multiclass segmentation data set

Image Completion

•Interactively select objects. Remove them and automatically fill with similar background (from the same image)

I. Drori, D. Cohen-Or, H. Yeshurun, SIGGRPAH'03 CSCE 590: Introduction to Image Processing

Morphological Image Processing

CSCE 590: Introduction to Image Processing

Object Detection / Recognition

Image Colorization

CSCE 590: Introduction to Image Processing

Biometrics

CSCE 590: Introduction to Image Processing

Super-Resolution

CSCE 590: Introduction to Image Processing

Computer vision algorithms

- Image processing
- Geometric computer vision
- Semantic computer vision

• It is fundamental first to understand image formation

Difficult scenarios

- In certain settings, such as the underwater, robotic vision is particularly challenging
 - Different lighting conditions
 - Color loss
 - Hazing and blur
 - Texture loss

What does a robot need ?

doesn't need a full interpretation of available images

"This is Prof. X in his office offering me a cup of iced tea."

does need information about what to do...

"Run Away!!"

reactive

avoiding obstacles (or predators)

- •pursuing objects
- localizing itself
- •Mapping
- •finding targets

•reasoning about the world ..._

environmental interactions

- Recognition:
 - What is that thing in the picture?
 - What are all the things in the image?
- Scene interpretation
 - Describe the image?
- Scene "reconstruction":
 - What is the 3-dimensional layout of the scene?
 - What are the physical parameters that gave rise to the image?
 - What is a description of the scene?

Notion of an "inverse problem."

Robot vision sampler

A brief overview of robotic vision processing...

Thresholded image

Edge detection

(VERY) Tentative Schedule

	Tuesday	Thursday		Tuesday	Thursday
Week 01	Introduction	Image Generation Perspective Transformation	Week 09	Advanced Topics: Motion	Advanced Topics: Shape from X
Week 02	Color Spaces	Image Formats, Compression	Week 10	Features (Detection)	Features (Matching)
Week 03	Statistics, Histogram, Thresholding	Single Image Operations	Week 11		
Week 04	Logical, Arithmetic Operations	Correlation	Week 12		
Week 05	Segmentation	Neurons and Convolutions	Week 13		
Week 06	CNNs	CNNs	Week 14		
Week 07	CNNs	WELLNESS HOLIDAY	Week 15		
Week 08	Advanced Topics: Stereo	Advanced Topics: Flow	Week 16		

Textbook

Digital Image Processing By R. C. Gonzalez and R. E. Woods 3rd edition

Evaluation

Schedule, deliverables, and evaluation:

•	<u>Component</u>	<u>Undergraduate</u>	<u>Graduate</u>
•	Assignments (4)	12.5%	12.5%
•	Graduate Assignments (4)		2.5%
•	Midterm Exam (Take home)	20%	15%
•	Final Exam (Take home)	30%	25%
•	Total	100%	100%

Midterm and final exam will be programming assignments as take-home exams

Homeworks

- Using OpenCV
 - C++
 - Python
- Using MATLAB

Contact

- <u>http://www.cse.sc.edu/~yiannisr/</u>
- <u>http://www.cse.sc.edu/~yiannisr/590/20</u>21
- Email: <u>yiannisr@cse.sc.edu</u>

• **Office hours**: by appointment

