
Ioannis Rekleitis 

Motion	and	Optical	Flow	
 



Correspondence	
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Fiduciary	Markers/Fiducial	

Fourier Tag 
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Good	Feature	
•  Invariant	to	transformations	
•  Unique	
•  Ef2icient	to	compute	
•  Good	precision	and	high	recall	
•  Several	Alternatives:	

– Harris	Corners	(OpenCV)		
–  SURF	(OpenCV)	
–  SIFT	
– ORB	
–  etc	
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Harris	Corners	
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Harris	Corners	
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SIFT	
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SIFT	
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SURF	
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SURF	
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ORB	
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ORB	
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Outliers	
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Outliers Inliers 



RANSAC	

•  See	Visual	Odometry	Tutorial	Presentation	
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Mosaic	
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3D	Sparse	reconstrucBon	

CSCE 590: Introduction to Image Processing 16 



3D	Sparse	reconstrucBon	
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Internet	Photos	
(“Colosseum”)	

Reconstructed	3D	cameras	and	
points	

Source: https://grail.cs.washington.edu/rome/ 



EgomoBon	
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Visual	Odometry/Structure	from	MoBon	
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Image	
stream	

Feature	
detection	

Feature	
matching	
(tracking)	

Motion	
estimation	 Optimization	



OpBcal	Flow	

•  De2inition:	
–  the	pattern	of	apparent	motion	of	objects,	surfaces,	
and	edges	in	a	visual	scene	caused	by	the	relative	
motion	between	an	observer	(an	eye	or	a	camera)	and	
the	scene.	
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Difference	between	OpBcal	Flow	and	Scene	
MoBon	

•  Optical	2low:	change	in	the	image	(2D)	
•  Scene	Motion:	change	in	the	scene	(3D)	
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OpBcal	Flow	Field	
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Information	about	image	motion	rather	than	the	scene.				
This	is	a	classic	reconstruction	problem.			

This	next	step	might	be	to	use	the	image	motion	to	infer	scene	
motion,	robot	motion	or	3D	layout.	

time	sequence	of	images	

OpBcal	flow	
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Information	about	scene	motion	rather	than	the	scene.	

an	“image	cube”	

I(x,y,t)	

OpBcal	flow	
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Information	about	scene	motion	rather	than	the	scene.	

optical	2low	 How	?	

OpBcal	flow	
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I(x,y,t)

OpBcal	Flow	
•  By	measuring	the	direction	that	intensities	are	moving...	

•  We	can	estimate	things...	
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By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0) 
I(x,y,t)

I(x,y,0)

I(x,y,1)

We	can	estimate	things	...	 =	Ix		dx	
dI	 at	(0,0,0)	

OpBcal	Flow	
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By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0
) 

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like	 =	Ix		 = = I(1,0,0)	-	I(0,0,0)		ΔI	
Δx	dx	

dI	 at	(0,0,0)	
1	-	0	

=	-30	

OpBcal	Flow	
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By	measuring	the	direction	that	intensities	are	moving...	

I(2,-1,0)

I(0,0,1)

I(0,0,0
) 

I(x,y,t)
I(x,y,0)

I(x,y,1)

We	can	estimate	things	like	
=	Ix		dx	

dI	 =	Iy		dy	
dI	 =	It		dt	

dI	 so...	

OpBcal	Flow	



Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

(x,y,t) 99 90 90 70 40
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90 90 70 40 40
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Measuring	OpBcal	Flow	

CSCE 590: Introduction to Image Processing 30 



Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

(x,y,t
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Measuring	OpBcal	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		
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Measuring	OpBcal	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

0		=		Ix	dx	+	Iy	dy	+	It	dt	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

ignore	these	terms	

(x,y,t
) 
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Measuring	OpBcal	Flow	
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Let		I(x,y,t)	be	the	sequence	of	images.	
Simplest	assumption	(constant	brightness	constraint):	

I(x,y,t)		=		I(x	+	dx,	y	+	dy,	t	+	dt)	

I(x,y,t)		=		I(x,y,t)	+		Ix	dx	+	Iy	dy	+	It	dt	+	2nd	deriv.	+	higher	

0		=		Ix	dx	+	Iy	dy	+	It	dt	

Reminder:						f(x	+	dx)	=	f(x)	+	f’(x)	dx	+	f’’(x)	dx2	/2		+		...		

ignore	these	terms	

-It		=		Ix								+	Iy				dt
dx

dt	
dy	 intensity-2low	equation	

(x,y,t
) 
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good	and	bad...	

Measuring	OpBcal	Flow	
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-It		=		Ix								+	Iy				dt	
dx	

dt	
dy	

•  The	intensity-2low	equation	provides	only	one	constraint	
	on	two	variables	(	x-motion	and	y-motion)	

It	is	only	possible	to	2ind	optical	2low	in	one	
direction...	

The	“aperture”	problem	
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It	is	only	possible	to	2ind	optical	2low	in	one	direction...	
at	any	single	point	in	the	image	!	

Smoothing	can	be	done	by	incorporating	neighboring	points’	information.	

img1	 img2	

raw	
optical	
2low	

smoothed	
for	ten	
iterations	

The	“aperture”	problem	
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ObservaBons	&	Warnings	

•  Assume	the	scene	itself	is	static.	
•  Find	matching	chunks	in	the	images.	
•  An	instance	of	correspondence.	
BUT	
•  World	really	isn’t	static.	
•  Lightning	might	change	even	in	a	static	scene.	
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Features	vs	OpBcal	Flow	

•  Feature-based	methods	
–  Detect	features	(corners,	textured	areas),	extract	descriptors,	and	
track	them	

–  Sparse	motion	2ields,	but	possibly	robust	tracking	
–  Suitable	especially	when	image	motion	is	large	(10s	of	pixels)	

•  Direct	methods	(optical	2low)	
–  Directly	recover	image	motion	from	spatio-temporal	image	
brightness	variations	

–  Global	motion	parameters	directly	recovered	without	an	
intermediate	feature	motion	calculation	

–  Dense	motion	2ields,	but	more	sensitive	to	appearance	variations	
–  Suitable	for	video	and	when	image	motion	is	small	(<	10	pixels)	
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Camera	and	IMU	
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From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials 



•  If	interpreting	a	single	image	is	dif2icult...	What	about	more	?!	

multiple	cameras	

multiple	times	

A	Vision	“soluBon”	

CSCE 590: Introduction to Image Processing 40 



Object	recogniBon	
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Pedestrian and car detection 

Lane detection 

Coral classification 

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/ 

From GoPro 3D Hero at Barbados 2015 Field Trial 



Bag	of	words	

CSCE 590: Introduction to Image Processing 42 

Object	 Bag	of	‘words’	

source: http://wikimedia.org 



Appearance-based	place	recogniBon	

CSCE 590: Introduction to Image Processing 43 

source: http://www.robots.ox.ac.uk/~mjc 



Deep	learning	based	classificaBon	
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Computer	Vision	Books	

•  Richard	Szeliski,	“Computer	Vision:	Algorithms	
and	Applications”,	Springer,	2010	

•  Richard	Hartley	and	Andrew	Zisserman,	
“Multiple	View	Geometry	in	Computer	Vision”,	
Cambridge	University	Press,	2004	

•  David	Forsyth	and	Jean	Ponce,	“Computer	
Vision:	A	Modern	Approach”,	Pearson,	2011	
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Nice	Classes	

•  Noah	Snavely	–	Introduction	to	Computer	Vision	
http://www.cs.cornell.edu/courses/
cs4670/2013fa/lectures/lectures.html	

•  Steve	Seitz	and	Rick	Szeliski	–	Computer	Vision	
http://courses.cs.washington.edu/courses/
cse576/08sp/	
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QuesBons?	
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