

UNIVERSITY OF SOUTH CAROLINA

CSCE 590 INTRODUCTION TO IMAGE PROCESSING

Introduction

Ioannis Rekleitis

Why Image Processing?

- Who here has a camera?
- How many cameras do you have
- Point where computers fast/cheap
- Cameras become omnipresent
- Deep Learning...

Major Topics Covered in Class

- image acquisition
- digital image representation
- Image enhancement
- Image restoration
- Color image processing
- Image compression
- Image segmentation
- Morphological image processing

Human Perception VS Machine Vision

Limited vs entire EM spectrum

http://www.kollewin.com/blog/electromagnetic-spectrum/

Image Acquisition and Representation

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Examples

1. Brain MRI

2. Cardiac CT

3. Fetus Ultrasound

4. Satellite image

5. IR image

1 and 3. http://en.wikipedia.org

- 2. http://radiology.rsna.org
- 4. http://emap-int.com
- 5. http://www.imaging1.com

CSCE 590: Introduction to Image Processing

Image Representation

Discrete representation of images

- we'll carve up image into a rectangular grid of pixels P[x,y]
- each pixel p will store an intensity value in [0 1]
- $\cdot 0$ →black; 1 →white; in-between →gray
- •Image size *m* by n →(*mn*) pixels

Applications of Digital Image Processing

- Digital cameras, portable devices
- Photoshop
- Human computer interaction
- Medical imaging for diagnosis and treatment
- Surveillance
- Aerial Drones
- Autonomous Cars
- Convolutional Neural Networks
- Virtual/Augmented Reality
- Fast-growing market!

. . .

Computer vision algorithms

- Image processing
- Geometric computer vision
- Semantic computer vision

• It is fundamental first to understand image formation

Difficult scenarios

- In certain settings, such as the underwater, robotic vision is particularly challenging
 - Different lighting conditions
 - Color loss
 - Hazing and blur
 - Texture loss

What does a robot need ?

doesn't need a full interpretation of available images

"This is Prof. X in his office offering me a cup of iced tea."

does need information about what to do...

"Run Away!!"

reactive

avoiding obstacles (or predators)

- •pursuing objects
- localizing itself
- •Mapping
- •finding targets

•reasoning about the world ..._

environmental interactions

- Recognition:
 - What is that thing in the picture?
 - What are all the things in the image?
- Scene interpretation
 - Describe the image?
- Scene "reconstruction":
 - What is the 3-dimensional layout of the scene?
 - What are the physical parameters that gave rise to the image?
 - What is a description of the scene?

Notion of an "inverse problem."

Robot vision sampler

A brief overview of robotic vision processing...

Thresholded image

Edge detection

Tentative Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
Week 01	Introduction	Image Generation Perspective Transformation	Color Spaces	Image Formats, Compression	
Week 02	Statistics, Histogram, Thresholding	Single Image Operations	Holiday	Logical, Arithmetic Operations	A1
Week 03	Correlation	Segmentation	DeNoising	Review	
Week 04	Midterm	Convolution	Neurons and Convolutions	CNNs	A2
Week 05	Advanced Topics: Stereo	Advanced Topics: Flow	Advanced Topics: Motion	Advanced Topics: Shape from X	A3
Week 06	Features (Detection)	Features (Matching)	Open discussion	Review	A4

Textbook

Digital Image Processing By R. C. Gonzalez and R. E. Woods 3rd edition

Evaluation

Schedule, deliverables, and evaluation:

•	<u>Component</u>	<u>Undergraduate</u>	<u>Graduate</u>
•	Assignments (4)	12.5%	12.5%
•	Graduate Assignments (4)		2.5%
•	Midterm Exam	15%	10%
•	Final Exam (standard time)	30%	25%
•	<u>Class Participation</u>	<u>5%</u>	<u>5%</u>
•	Total	100%	100%

Homeworks

- Using OpenCV
 - C++
 - Python
- Using MATLAB

Contact

- <u>http://www.cse.sc.edu/~yiannisr/</u>
- <u>http://www.cse.sc.edu/~yiannisr/590/2018</u>

• Email: <u>yiannisr@cse.sc.edu</u>

• Office hours: by appointment

