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Coverage

* A task performed
quite often in
everyday life:

— Cleaning

— Painting

— Plowing/Sowing
— Tile setting

— etc.
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Motivation




Motivation
Lawn Mowing
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Motivation
Vacuum Cleaning




Robotic Coverage

e More than 10 million
Roombas sold!

* Automated Car Painting

D
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From: http://www.myroombud.com/



Coverage

* First Distinction
— Deterministic  Demining

— Random Vacuum Cleaning
e Second Distinction
— Complete

— No Guarantee

 Third Distinction
— Known Environment
— Unknown Environment
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Non-Deterministic Coverage

S. Koenig Ant Robotics, terrain coverage

* Complete Random Walk

e Ant Robotics
— Leave trail
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Deterministic Coverage

* Complete Algorithm
* Guarantees Complete Coverage
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Cell-Decomposition Methods

Two families of methods:

= Exact cell decomposition
The free space F is represented by a collection of
non-overlapping cells whose union is exactly F
Examples: trapezoidal and cylindrical
decompositions
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SOUTH CAROLINA
BOUSTROPHEDON CELLULAR
DECOMPOSITION
The way of the Ox!
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Boustro gj
it Single Robot Coverage

* Deterministic algorithm

* Guarantee of completeness

e Sensor based

e Unknown Environment
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*Seed spreader algorithm: Lumelsky et al, “Dynamic path planning in sensor-based terrain acquisition’,
IEEE Transactions on Robotics and Automation, August 1990.

*Boustrophedon algorithm: Choset and Pignon, “Coverage path planning: The boustrophedon cellular
decomposition”, International Conference on Field and Service Robotics,1997.
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Single Robot Coverage

Direction of Coverage

Reeb graph
Vertices: Critical Points

Cellular Decomposition Edges: Cells

CSCE 574: Robotics
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Critical Points R

There are four types of critical points:
@Forward Concave critical point
@Reverse Concave critical point
EReverse Convex critical point
@Forward Convex critical point
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Efficient Coverage

* Find an order for traversing the Reeb graph such that
the robot would not go through a cell more times
than necessary

Solution

e Use the Chinese Postman Problem
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Chinese Postman Problem

* The Chinese postman problem (CPP), is to find a
shortest closed path that visits every edge of a
(connected) undirected graph. When the graph
has an Eulerian circuit (a closed walk that
covers every edge once), that circuit is an
optimal solution.

See: ]. Edmonds and E.L. Johnson, Matching Euler tours and
the Chinese postman problem, Math. Program. (1973).
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Offline Analysis Algorithm

Direction
Alignment
(Optional)
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Offline Analysis Online Trajectory Control
Cellular Chinese | Per-Cell ok :
Decom Postman i Planner ' Holonomic

p- Problem Controller
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Offline Analysis Algorithm

& Offline Analysis A Online Trajectory Control
D¥rect10n Cellular Chinese Per-Cell Non- |
Alignment Postman Holonomic
. Decomp. Planner
(Optional) Problem ) Controller

* Input: binary map separating obstacle from free space

* Boustrophedon Cellular Decomposition (BCD)

O: intersections =
vertices

<> : cells = edges

A
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Offline Analysis Algorithm (cont.)

& Offline Analysis Online Trajectory Control
D¥rect10n Cellular Chinese Per-Cell Non- |
Alignment Decom Postman Planner Holonomic
(Optional) p. Problem Controller

\V/
A
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Chinese Postman Problem

— Eulerian circuit, i.e. single traversal through all cells (edges)

CSCE 574: Robotics
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Per-Cell Coverage Planner

Offline Analysis

Direction
Alignment

Cellular

Chinese
Postman

-

J/

.

Online Trajectory Control

Per-Cell
Planner

Non-
Holonomic

I

i

i

Seed Spreader: piecewise linear sweep lines

Footprint width
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Coverage Direction Alighment

& Offline Analysis ' [ Online Trajectory Control
D1rect10n Cellular Chinese Per-Cell Non- |
Alignment Postman Holonomic
: Decomp. Planner
(Optional) Problem ) Controller

Default Obstacle Boundaries Free Space Distribution

_* Alignment with average wind heading (pre-flight)

A
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Non-Holonomic Robot Controller

Offline Analysis A Online Trajectory Control
D¥rect10n Cellular Chinese Per-Cell Non- |
Alignment Decom Postman Planner Holonomic
(Optional) p. Problem ) Controller

2a

* Turning strategies

Distance (m)

0 100 200 300
Distance (m)

CSCE 574: Robot

Greedy Waypoint
cs  Controller

0 100 200 300
Distance (m)

Curlicue Controller
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Chinese Postman Problem

* The solution of the CPP guarantees that no edge is
doubled more than once

e That means some cells have to be traversed twice
* Cells that have to be traversed/covered are divided in

half
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Double Coverage of a Single Cell

* By dividing the cell diagonally we control the beginning
and end of the coverage
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Double Coverage of a Single Cell

* By dividing the cell diagonally we control the beginning
and end of the coverage

S
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Efficient Coverage Algorithm

* Given a known environment:
— Calculate the Boustrophedon decomposition
— Construct the Reeb graph

— Use the Reeb graph as input to the Chinese Postman
Problem (CPP)

— Use the solution of the CPP to find a minimum cost cycle
traversing every edge of the Reeb graph

— For every doubled edge divide the corresponding cell in
half

— Traverse the Reeb graph by covering each cell in order

2
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Traversal order of the Reeb graph

( __m .‘
ey



Example
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Motion Planner = =1E3
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Example: Boustrophedon Decomposition
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Motion Planner

L=Jle)ix]
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Example: Reeb Graph

B Motion Planner [L][E]M
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Example: CPP solution
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Motion Planner

L=Jle)ix]
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Example
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Motion Planner

L=Jle)ix]
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Example
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Motion Planner = =1E3
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Example
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Motion Planner

L=Jle)ix]
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Example
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Motion Planner

L=Jle)ix]
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Example
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Motion Planner
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Example

£4 .
CSCE 574: Robotics

Motion Planner

L=Jle)ix]
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Example
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Motion Planner
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Example
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Motion Planner

L=Jle)ix]
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Example
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Motion Planner
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‘Motion Planner

| (& =)

‘l
\
\ \
\\ \
\ \
\ | |
\
\
-
|
!
|
. -
\ .~ -

=

-

CSCE 574: Robotics




Example
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Example 2
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Motion Planner [Z]@[Z]
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Example 2 Boustrophedon Decomp.
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Example 2

X
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Motion Planner [Z]@[z]
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Example 2
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Motion Planner
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Example 2
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Motion Planner
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Example 2
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Motion Planner
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Example 2
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Motion Planner
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Example 2
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Motion Planner
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Example 2
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Motion Planner
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Example 2
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Example 2
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Example 2
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Example 2
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Example 2

\%
CSCE 574: Robotics

Motion Planner
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Example 2

Motion Planner
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Example 2
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UAV-Efficient Coverage




UAV-Efficient Coverage

*UAVs non-holonomic constraints
require special trajectory planning
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Image Mosaic
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Video at ICRA 2011

Complete Optimal Terrain Coverage
using an Unmanned Aerial Vehicle

Angi Xu
Chatavut Viriyasuthee
loannis Rekleitis

T McGill
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Multi-Robot Efficient Coverage

Efficient Multi-Robot Coverage
of a Known Environment

Nare Karapetyan'?, Kelly Benson', Chris McKinney',
Perouz Taslakian?® and loannis Rekleitis'

'University of South Carolina, Columbia, SC, USA
2American University of Armenia, Yerevan, Armenia
SElement Al, Montreal, Canada
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‘Multi-Robot Dubins Vehicle Coverage

i

Multi-robot Area Coverage with Autonomous Surface Vehicles

Nare Karapetyan, Jason Moulton, Jeremy S. Lewis,
Alberto Quattrini Li, Jason M. O'Kane, loannis Rekleitis

University of South Carolina
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Riverine Coverage
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Coverage

* Information Driven Coverage

* Limited Resource Coverage
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3N Systematic coverage of

an aquatic environment

Redline Motosports

)
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Jakes Landing 3 oy
- "‘ RS

Palmetto Propane,

* Fucls & loe) The target environment

Pa‘»gﬁ:glcclﬁr\:g o‘ R (Satel I ite)

y Cox, iTihe Brick L_
Mortar Agencys/
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City of West Columbia (@), O 3 Gateway’Supply Co
and Lexington CountysuVagt"0y = 9 3" L
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Part of Lake Murray, South Carolina

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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Systematic coverage of

UNIVERSITY OF

SOUTH CAROLINA

an aquatic environment

The binary map identifying obstacles and
free space

Part of Lake Murray, South Carolina

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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Systematic coverage of

UNIVERSITY OF

SOUTH CAROLINA

an aquatic environment

The free space map, obstacles dilated
for safety

Part of Lake Murray, South Carolina

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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Systematic coverage of

UNIVERSITY OF

SOUTH CAROLINA

an aquatic environment

The skeleton of free space

Part of Lake Murray, South Carolina

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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Systematic coverage of

UNIVERSITY OF

SOUTH CAROLINA

an aquatic environment

The skeleton (in red) and the second
skeleton between the skeleton and the
obstacles (in blue).

*Both skeletons, trimmed

Part of Lake Murray, South Carolina

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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UNIVERSITY OF

SOUTH CAROLINA

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, I. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IR0OS), 2022.
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Open-Space Proximity
Heatmap to ASV trajectory

UNIVERSITY OF

SOUTH CAROLINA

Skeleton-based trajectory Boustrophedon path

[1] I. Salman, J. M. O'Kane, I. Rekleitis. Uniform coverage of large water bodies with islands under limited resources. In Robotics for
Climate Change (RCC) Workshop at IEEE International Conference on Robotics and Automation (ICRA), 2022.

[2] I. Salman, J. Raiti, N. Karapetyan, A. Venkatachari, A. Bourbonnais, J. O'Kane, 1. Rekleitis. Confined Water Body Coverage under
Resource Constraints. In JEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
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Coverage of Known Worlds

Empty Terrain Outdoor-Like Terrain Indoor-Like Terrain

] [t | [ viert] [t s | [t 5] [ ] Famin ] [ | [ vt (5t G | et woam ] [movn ] Famit ] [ste | [ vt | (Bt v s | [t 5o ] [ ]

STC MSTC
cover time = 682 cover time = 332
cover and return time = 688 cover and return time = 394

From: X. Zheng and S. Koenig. Robot Coverage of Terrain with
Non-Uniform Traversability. In Proc. of the IEEE Int. Conf. on |
Intelligent Robots and Systems (IROS), pg. 3757-3764, 2007
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Cell-Decomposition Methods

Two families of methods:
= Exact cell decomposition

» Approximate cell decomposition
F is represented by a collection of non-overlapping
cells whose union is contained in F

Examples: quadtree, octree, 2"-tree
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further decomposing...

* Approximate cell decomposition

[

A

recursively subdivides each mixed obstacle/free
(sub)region into four quarters...

Quadtree:

£4 .
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further decomposing...

* Approximate cell decomposition

A

Quadtree:

%\-\\\‘%
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recursively subdivides each mixed obstacle/free
(sub)region into four quarters...
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further decomposing...

* Approximate cell decomposition

A

Quadtree:
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recursively subdivides each mixed obstacle/free
(sub)region into four quarters...
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further decomposing...

* Approximate cell decomposition

Again, use a graph-search algorithm to find
a path from the start to goal

Quadtree

is this a complete path-planning algorlthm?
i.e., does it find a path when one Sists ?

A
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Octree Decomposition
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EMPTY cell

MIXED cell . FULL cell
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