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Definition
A robot configuration is a specification 
of the positions of all robot points 
relative to a fixed coordinate system

Usually a configuration is expressed as 
a “vector” of position/orientation 
parameters
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What is a Path?

qgoal qinit

qgoal
qinit
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What is a Path?
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Tool: Configuration Space
(C-Space C)
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Articulated Robot Example

q1

q2

q = (q1,q2,…,q10)
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Configuration Space of a Robot

Space of all its possible configurations
But the topology of this space is usually 
not that of a Cartesian space

C = S1 x S1
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Parameterization of SO(3)
• Euler angles: (f,q,y)

• Unit quaternion:
(cos q/2, n1 sin q/2, n2 sin q/2, n3 sin q/2)
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A welding robot
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A Stuart Platform
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Barrett WAM arm on a mobile platform
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High-Dimensional Systems

Norwegian University of Science and 
Technology, Kongsberg Maritime
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Configuration Space Obstacle

CSCE-574 Robotics



Two link path
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2D Rigid Object
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The Configuration Space

CSCE-574 Robotics



Moving a piano
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Parameterization of Torus
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Linear-Time Computation of 
C-Obstacle in 2-D

(convex polygons)
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Rigid Robot Translating and 
Rotating in 2-D
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Free and Semi-Free Paths

§ A free path lies entirely in the free 
space F

§ A semi-free path lies entirely in the 
semi-free space

CSCE-574 Robotics



CSCE-574 Robotics



CSCE-574 Robotics



Notion of Homotopic Paths
Two paths with the same endpoints are 
homotopic if one can be continuously deformed 
into the other
R x S1 example:

t1 and t2 are homotopic
t1 and t3 are not homotopic
In this example, infinity of homotopy classes

q

q’
t1 t2

t3
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Connectedness of C-Space
C is connected if every two configurations can 
be connected by a path
C is simply-connected if any two paths 
connecting the same endpoints are homotopic
Examples: R2 or R3

Otherwise C is multiply-connected
Examples: S1 and SO(3) are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes
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Classes of Homotopic Free Paths
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Probabilistic Roadmaps PRMs

The basic idea behind PRM is to take random samples from the 
configuration space of the robot, testing them for whether they are in 
the free space, and use a local planner to attempt to connect these 
configurations to other nearby configurations. The starting and goal 
configurations are added in, and a graph search algorithm is applied to 
the resulting graph to determine a path between the starting and goal 
configurations.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for 
path planning in high-dimensional configuration spaces", IEEE Transactions on Robotics and 
Automation 12 (4): 566–580.
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Rapidly-exploring Random Trees

• A point P in C is randomly chosen.
• The nearest vertex in the RRT is selected.
• A new edge is added from this vertex in the 

direction of P, at distance e.
• The further the algorithm goes, the more 

space is covered.
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Rapidly-expanding Random Trees

Starting vertex
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Rapidly-expanding Random Trees

Vertex randomly drawn
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Rapidly-expanding Random Trees

Nearest vertex
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Rapidly-expanding Random Trees

New vertexe

The vertex is in Cfree
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Rapidly-expanding Random Trees

Vertex randomly drawn
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Rapidly-expanding Random Trees

Nearest point
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Rapidly-expanding Random Trees

New vertexe

The vertex is in Cfree
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Rapidly-expanding Random Trees

CSCE-574 Robotics



Rapidly-expanding Random Trees

Vertex randomly drawn
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Rapidly-expanding Random Trees

Nearest vertex
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Rapidly-expanding Random Trees

New vertex
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Rapidly-expanding Random Trees

And it continues…
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RRT-Connect

• We grow two trees, one from the beginning 
vertex and another from the end vertex

• Each time we create a new vertex, we try to 
greedily connect the two trees
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RRT-Connect: example
Start

Goal
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RRT-Connect: example

Random vertex

CSCE-574 Robotics



RRT-Connect: example
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RRT-Connect: example
We greedily connect the 
bottom tree to our new 
vertex
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example

Obstacle found !
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RRT-Connect: example

Now we swap roles !
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RRT-Connect: example

Now we swap roles !
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RRT-Connect: example

We grow the bottom tree
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RRT-Connect: example

Now we greedily try to connect

And we continue…
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RRT-Connect: example
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RRT-Connect: example
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RRT-Connect: example

CSCE-574 Robotics



RRT-Connect: example

Connection made !
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RRT-Connect: example

Now we have a solution !
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RRT-Connect: example

Last step: path smoothing
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RRT-Connect: example

Last step: path smoothing
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An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.htmlCSCE-574 Robotics



A Puzzle solved using RRTs
The goal is the separate the two bars from 
each other. You might have seen a puzzle 
like this before. The example was 
constructed by Boris Yamrom, GE 
Corporate Research & Development 
Center, and posted as a research benchmark 
by Nancy Amato at Texas A&M University. 
It has been cited in many places as a one of 
the most challenging motion planning 
examples. In 2001, it was solved by using a 
balanced bidirectional RRT, developed by 
James Kuffner and Steve LaValle. There 
are no special heuristics or parameters that 
were tuned specifically for this problem. 
On a current PC (circa 2003), it 
consistently takes a few minutes to solve. 
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Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The 
video shows an X-Wing fighter that must fly through structures on a lunar base before entering 
the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on 
the Algorithmic Foundations of Robotics, 2000. 
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PRMs vs RRTs

PRMs
• In general, they need more 

time.
• Multi-query planners given 

the same environment.
• Only for holonomic 

systems. Not ideal for most 
real mobile robots.

• Should cover the whole C in 
order to work properly.

RRTs
• They are much faster in 

most cases.
• Single query planners. More 

robust to different 
conditions.

• Both for holonomic and 
non-holonomic systems.

• They can provide fast 
solutions only with few 
samples.


