

CSCE 574 ROBOTICS

Introduction

Why Robotics?

- Manufacturing
- Labor shortage (agriculture, mining)
- Point where computers fast/cheap
- Automation of cars
 —more cars on highways
- To reach areas where no human can go

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals/Care facilities
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

Amazon bought Kiva for \$775M

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

Robotic technology becomes affordable

TurtleBot 2

AR.DRONE

Kinect

IMU

GPS

Raspberry Pi

Lego Mindstorm

Professors Robotics at USC

CSCE 274 Dr. O'Kane

Courses

CSCE 574 Dr. Vitzilaios (ME)

CSCE 774 Dr. **Rekleitis**

CSCE 790 Dr. Wang (EE)

Autonomous Field Robotics Lab

Autonomous Field Robotics Lab

Develop algorithms for robotic applications

Philosophy

Evaluate performance of the deployed robots

Deploy algorithms on fielded robots

(Aerial, ground, surface, and/or underwater)

 NSF CRI II-New: Acquisition of a Heterogeneous Team of Field Robots for Coastal Environments

• PI: I. Rekleitis.

• CoPIs: J. Beer, J. O'Kane

Several **Surface Vehicles** 2 **Aqua** u/ w vehicles

Aerial Vehicles:

2 fixed wings

2 quadrotor

• SC Floods Research Initiative: Rapid Assessment of Bridge Scouring and Recovery Following Extreme Flood Events. PI: G. Voulgaris

• Google Faculty Research Awards: Underwater Street View: Wreck Mapping off the Carolinas

• PI: I. Rekleitis

• 2016-2017

 NSF NRI: Enhancing Mapping Capabilities of Underwater Caves using Robotic Assistive Technology

• PI: I. Rekleitis

• **Funding**: 2016-2019

Stereo Based 3D Reconstruction

Cooperative Localization

Past Projects

Past Projects

Complete Optimal Terrain Coverage using an Unmanned Aerial Vehicle

Anqi Xu Chatavut Viriyasuthee Ioannis Rekleitis

Aerial Robotics

Cooperative Localization

- Inferring relative pose
- Using vision only
- Bearing only data

Coral Reef Monitoring by Heterogeneous Robots

Marine Robotics

Capstone Project: Drift Nodes

- Measure Lagrangian current characteristics, marine life, salinity, turbidity, etc.
- Improve estimation accuracy

Marine Robotics: Drift Nodes

- Monitor, shallow coral reefs.
- Improve estimation accuracy

Marine Robotics

Underwater Situational Awareness

- Vision-INS State Estimation
- Path Planning

Mapping

Marine Robotics

Vehicles

Two Aqua with USBL

Vehicles

• Six ASVs

Sensors

• Stereo Rig – 2017 (made at SC)

Sensors

Cooperative Localization (made at SC)

Shipwreck Mapping

Shipwreck Mapping

Robot's Eye View

Underwater Cave Mapping

Underwater Cave Mapping

Shallow Coral Classification using Deep Learning

Using a CNN

CSCE 574: Robotics

ASV Modeling of Adverse Conditions

CSCE 574: Robotics

Single/Multi Robot Coverage Dubins Vehicle kinematics

Marine Robotics:

HRI with limited bandwidth

Indoor: Localization with dynamic obstacles

Indoor: Communication Constrained Exploration

Syllabus

- Week 01: Syllabus presentation, Round Table, Introduction, History of Robotics. ROS
- Week 02: Actuators. Locomotion. Sensor (Tactile, Range Finders, GPS, IMU, Position Encoders).
- Week 03: Reactive Path Planning. Potential Fields. State Estimation,
- Week 04: Bayesian Filtering Particle Filters
- Week 05: Kalman Filters
- Week 06: Exploration, HRI
- Week 07: Mapping: Metric Maps, Topological Maps, hybrids
- Week 08: Visibility Graphs, Bug Algorithm, Generalized Voronoi Graphs, Atlas.
- Week 09: Coordinates, Control
- Week 10: Semantic hierarchy of spatial representations. Configuration Space, PRMs
- Week 11: Architectures.
- Week 12: Coverage, Multi-Robot Coverage
- Week 13: Learning in Robotics
- Week 14: Sensor (Vision).
- Week 15: Review of Material

Evaluation

• 5 Homeworks, 10% each: 50%

First two individual

Last three 50% team, 50% individual

• Final Examination: 30%

• Midterm: 20%

Homeworks/Projects

- Using ROS
- Using Simulations
- Using sensor data from real robots
- Using real robots (TurtleBot 2)

How to do poorly

Here are some habits that have correlated with poor performance in this course in the past:

- Not starting/making progress on the programming assignments until the last minute
- Skipping class
- Ignoring the communications from the instructor
- Not properly reading the instructions
- Ignoring the homework
- Not asking questions and interacting with the instructors

Contact

- http://www.cse.sc.edu/~yiannisr/
- http://www.cse.sc.edu/~yiannisr/574/2018Fall/
- Email: yiannisr@cse.sc.edu

• **Office hours**: 2235– Mon/Wed 13:00-14:30 and by appointment

