
Background:	Motion	(or	Path)	Planning	



Examples	



Background:	Configuration	Space	-	C		

•  Degree	of	Freedom	(DoF):	Each	of	a	number	of	independently	
variable	factors	affecting	the	range	of	states	in	which	a	system	
may	exist.	

•  Configuration:	A	single	complete	specification	of	the	control	
parameters	of	a	system	

•  Configuration	Space:	The	space	containing	all	the	possible	
combinations	of	the	control	parameters	



Understanding	the	C	–	1D	point	robot	

Workspace:	 Configuration	Space:	
C	=	[A,	B]	
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Understanding	the	C	–	2D	point	robot	

Workspace	
•  DoFs	:	{x,y}	

Configuration	Space:	
•  C	=	[0,	X]×[0,Y]	
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Understanding	the	C	–	2D	point	robot	

Workspace	
•  DoFs	:	{x,y}	

Configuration	Space:	
•  C	=	[0,	X]×[0,Y]	
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Understanding	the	C	–	2D	point	robot	

Workspace	
•  DoFs	:	{x,y}	

Configuration	Space:	
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Understanding	the	C	–	2D	point	robot	

Workspace	
•  DoFs	:	{x,y}	

Configuration	Space:	
•  C	=	[0,	X]×[0,Y]	
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Understanding	the	C	–	2D	point	robot	
extended	

Workspace:	 Configuration	Space:	
•  C	=	[0,	X]×[0,	Y]×[-π,	π]	•  DoFs	:	{x,	y,	θ}	
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Understanding	the	C	–	2D	point	robot	
extended	

Workspace:	 Configuration	Space:	
•  C	=	[0,	X]×[0,	Y]×[-π,	π]	•  DoFs	:	{x,	y,	θ}	
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Workspace:	 Configuration	Space:	
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Understanding	the	C	–	2D	point	robot	
extended	

Workspace:	 Configuration	Space:	
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Understanding	the	C	–	2D	point	robot	
extended	

Workspace:	 Configuration	Space:	
•  C	=	[0,	X]×[0,	Y]×[-π,	π]	•  DoFs	:	{x,	y,	θ}	
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In	reality,	a	“wheel”	like	space!!!	
	



Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
•  DoFs	:	{α,	β}	 •  C=	{0,	π}×{-π,	π}	
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Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
•  DoFs	:	{α,	β}	 •  C=	{0,	π}×{-π,	π}	
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Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
•  DoFs	:	{α,	β}	 •  C=	[0,	π]×[-π,	π]	
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Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
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Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
•  DoFs	:	{α,	β}	 •  C=	[0,	π]×[-π,	π]	

α	

In	reality,	a	cylinder!!!		
β	



Understanding	the	C	–	2D	2R	manipulator	

Workspace:	 Configuration	Space:	
•  DoFs	:	{α,	β}	 •  C=	[-π,	π]×[-π,	π]	

α	

A	“donut”	like	shape	if	also	the	other	
joint	can	revolve	360	degrees.	β	



Understanding	the	C	–	2D	4R	manipulator	

Workspace:	
•  DoFs	:	{α,	β,	γ,	δ}	

Configuration	Space:	
•  C	=	{0,	π}×{-π,	π}×{-π,	π}×{-π,	π}	

•  4-D	Space!	
•  Hard	to	visualize.	
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The	Motion	Planning	Problem	

•  Given	an	initial	configuration	and	a	specific	group	of	goal	
configurations	return	a	path	of	valid	configurations	that	move	
the	robot	from	the	initial	to	the	goal	state.	

•  Not	an	easy	problem:	P-SPACE	Hard!	[J.	H.	Reif.,	1979.]	



Sampling	based	techniques	

•  Sampling	based	techniques	come	to	the	rescue!	
–  	Graphs	are	created	using	random	samples	inside	the	C-free	
– By	connecting	the	samples	the	algorithms	try	to	find	a	path	
connecting	the	initial	with	the	goal	configuration.	

•  Only	a	function	that	checks	if	a	random	configuration	is	valid	
needed.	



Probabilistic	Roadmaps	(PRMs)	

•  Sample	uniformly	random	configurations	for	a	while.	
•  Keep	the	valid	ones.	
•  Try	to	connect	the	samples	creating	nodes	and	by	finding	the	
minimum	spanning	tree.	

•  Use	the	structure	for	each	problem	by	connecting	the	initial	
and	goal	configurations	to	the	graph.	
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Rapidly	exploring	Random	Trees	(RRTs)	

•  Start	from	the	initial	configuration.	Iteratively:	
– Sample	uniformly	a	random	sample	qrand.	
– Find	the	closer	node	to	that	random	sample	qnear.	
– Extend	the	tree	from	qnear	to	qrand	creating	the	new	node	qnew.	
– Until	timeout	or	the	goal	configuration	is	reached.	
– Then	traverse	the	tree	from	the	goal	configuration	to	the	root.	
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Probabilistic	Completeness	

•  Both	RRTs	and	PRMs	have	probabilistic	completeness	
guarantees:	
– The	probability	of	a	solution	to	be	found,	if	one	exists,	tends	to	1	in	
the	infinity.	

•  Yes.	Theoretically,	the	problem	is	that	hard	that	the	most	efficient	techniques	
may	need	to	run	for	an	eternity	for	a	solution!	

•  Practically:	Solutions	can	be	found	in	reasonable	time,	if	we	are	lucky.	

•  Probabilistic	Completeness	is	the	best	guarantee	that	a	
complete	general	planner	can	offer.	



PRMs	vs	RRTs	

PRMs	
•  In	general,	they	need	more	time.	
•  Multi-query	planners	given	the	same	

environment.	
•  Only	for	holonomic	systems.	Not	ideal	

for	most	real	mobile	robots.	
•  Should	cover	the	whole	C	in	order	to	

work	properly.	

RRTs	
•  They	are	much	faster	in	most	cases.	
•  Single	query	planners.	More	robust	to	

different	conditions.	
•  Both	for	holonomic	and	non-

holonomic	systems.	
•  They	can	provide	fast	solutions	only	

with	few	samples.	



High-Dimensional	Systems	
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Experiments	–HR	Manipulator	
Horn	 Cluttered	

	



Experiments	-	Baxter	



Experiments	-	Baxter	


