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Bayesian	Filter	

•  Estimate	state	x	from	data	Z	
– What	is	the	probability	of	the	robot	being	at	x?	

•  x	could	be	robot	location,	map	information,	locations	of	
targets,	etc…	

•  Z	could	be	sensor	readings	such	as	range,	actions,	
odometry	from	encoders,	etc…)	

•  This	is	a	general	formalism	that	does	not	depend	on	
the	particular	probability	representation	

•  Bayes	filter	recursively	computes	the	posterior	
distribution:	

)|()( TTT ZxPxBel =
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Example	of	a	Parameterized	Bayesian	Filter:		
Kalman	Filter	

Kalman filters (KF) represent posterior belief by a  

Gaussian (normal) distribution 
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An n-d Gaussian  
distribution is given by: 
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Linear	Algebra	
•  Matrix	Addition	
•  Matrix	Multiplication	A*B	
•  Matrix-Vector	Multiplication	A*v	
•  Matrix	Transpose	AT,	(AB)T=ATBT	
•  Matrix	Inverse	A-1	
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Notation	
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True Value x
Estimate: x̂
Error (residual): !x = x − x̂



Kalman	Filter	:	a	Bayesian	Filter	
•  Initial	belief	Bel(x0)	is	a	Gaussian	distribution	

–  What	do	we	do	for	an	unknown	starting	position?	
•  State	at	time	t+1	is	a	linear	function	of	state	at	time	t:	

•  Observations	are	linear	in	the	state:	

•  Error	terms	are	zero-mean	random	variables	which	are	normally	distributed	
•  These	assumptions	guarantee	that	the	posterior	belief	is	Gaussian	

–  The	Kalman	Filter	is	an	efficient	algorithm	to	compute	the	posterior	
–  Normally,	an	update	of	this	nature	would	require	a	matrix	inversion	(similar	to	a	
least	squares	estimator)	

–  The	Kalman	Filter	avoids	this	computationally	complex	operation	
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The	Kalman	Filter	
•  Motion	model	is	Gaussian…		
•  Sensor	model	is	Gaussian…	
•  Each	belief	function	is	uniquely	characterized	by	its	
mean	µ	and	covariance	matrix	Σ	

•  Computing	the	posterior	means	computing	a	new	
mean	µ and	covariance	Σ from	old	data	using	
actions	and	sensor	readings	

•  What	are	the	key	limitations?	
1) Unimodal distribution 
2) Linear assumptions 

7 CSCE-574 Robotics 



The	Kalman	Filter	

•  Linear	process	and	measurement	models	
•  Gaussian	noise		(or	white 	)	
•  Gaussian	state	estimate	

•  Process	model	is	

•  Measurement	model	is	

Prior Measurement Kalman filter posterior 

111 −−− ++= tttt qBuAxx

ttt rHxz +=

Kalman, 1960 
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What	we	know…	
What	we	don’t	know…	

•  We	know	what	the	control	inputs	of	our	process	are	
–  We	know	what	we’ve	told	the	system	to	do	and	have	a	model	for	what	the	
expected	output	should	be	if	everything	works	right	

•  We	don’t	know	what	the	noise	in	the	system	truly	is	
–  We	can	only	estimate	what	the	noise	might	be	and	try	to	put	some	sort	of	upper	
bound	on	it	

•  When	estimating	the	state	of	a	system,	we	try	to	find	a	set	of	
values	that	comes	as	close	to	the	truth	as	possible	
–  There	will	always	be	some	mismatch	between	our	estimate	of	the	system	and	the	
true	state	of	the	system	itself.		We	just	try	to	figure	out	how	much	mismatch	there	
is	and	try	to	get	the	best	estimate	possible	
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Minimum	Mean	Square	Error	

Reminder: the expected value, or mean value, of a 
Continuous random variable x is defined as: 

∫
∞

∞−
= dxxxpxE )(][

Minimum Mean Square Error (MMSE) 

)|( ZxPWhat is the mean of this distribution? 

This is difficult to obtain exactly.  With our approximations, 
we can get the estimate x̂

]|)ˆ[( 2
tZxxE −…such that is minimized. 

According to the Fundamental Theorem of Estimation Theory 
this estimate is: 

∫
∞

∞−
== dxZxxpZxExMMSE )|(]|[ˆ
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Fundamental	Theorem	of	Estimation	Theory	

•  The	minimum	mean	square	error	estimator	equals	the	expected	(mean)	value	of	x	
conditioned	on	the	observations	Z	

•  The	minimum	mean	square	error	term	is	quadratic:			

–  Its	minimum	can	be	found	by	taking	the	derivative	of	the	function	w.r.t	x	and	setting	that	
value	to	0.	

•  It	is	interesting	to	note	that	when	they	use	the	Gaussian	assumption,	Maximum	A	
Posteriori	estimators	and	MMSE	estimators	find	the	same	value	for	the	parameters.		
–  This	is	because	mean	and	the	mode	of	a	Gaussian	distribution	are	the	same.	
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Kalman	Filter	Components	
(also	known	as:	Way	Too	Many	Variables…)	

Linear	discrete	time	dynamic	system	(motion	model)	

ttttttt wGuBxFx ++=+1

Measurement equation (sensor model) 

1111 ++++ += tttt nxHz

State transition 
function 

Control input 
function 

Noise input 
function with covariance Q 

State Control input Process noise 

State Sensor reading Sensor noise with covariance R 

Sensor function Note:Write these down!!! 
12 CSCE-574 Robotics 



Computing	the	MMSE	Estimate	of	the	State	
and	Covariance	
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Given a set of measurements: }1,{1 +≤=+ tizZ it

According to the Fundamental Theorem of Estimation, the state 
and covariance will be: 
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Computing	the	MMSE	Estimate	of	the	
State	and	Covariance	

CSCE-574 Robotics 14 

What is the minimum mean square error estimate 
of the system state and covariance? 

ttttttt uBxFx +=+ ||1 ˆˆ Estimate of the state variables 

ttttt xHz |11|1 ˆˆ +++ = Estimate of the sensor reading 

T
ttt

T
tttttt GQGFPFP +=+ ||1 Covariance matrix for the state 

11|11|1 +++++ += t
T

tttttt RHPHS Covariance matrix for the sensors 



At	last!		The	Kalman	Filter…	
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Propagation (motion model): 
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…but	what	does	that	mean	in	English?!?	
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Propagation (motion model): 

Update (sensor model): 

- State estimate is updated from system dynamics 

- Uncertainty estimate GROWS 

- Compute expected value of sensor reading 

- Compute the difference between expected and “true”  

- Compute covariance of sensor reading 

- Compute the Kalman Gain (how much to correct est.) 

- Multiply residual times gain to correct state estimate 

- Uncertainty estimate SHRINKS 
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Kalman	Filter	Block	Diagram	
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Example	1:	Simple	1D	Linear	System	

Given: F=G=H=1, u=0 
Initial state estimate = 0 
Linear system: 
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State Estimate 
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State Estimation Error vs 3σ Region of Confidence 
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Sensor Residual vs 3σ Region of Confidence 
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Kalman Gain and State Covariance 
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Example	2:		Simple	1D	Linear	System	with	
Erroneous	Start	

Given: F=G=H=1, u=cos(t/5) 
Initial state estimate = 20 
 
Linear system: 
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State Estimate 
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State Estimation Error vs 3σ Region of Confidence 
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Sensor Residual vs 3σ Region of Confidence 
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Kalman Gain and State Covariance 
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Some	observations	

•  The	larger	the	error,	the	smaller	the	effect	on	the	final	state	
estimate	
–  If	process	uncertainty	is	larger,	sensor	updates	will	dominate	state	
estimate	

–  If	sensor	uncertainty	is	larger,	process	propagation	will	dominate	state	
estimate	

•  Improper	estimates	of	the	state	and/or	sensor	covariance	may	
result	in	a	rapidly	diverging	estimator	
–  As	a	rule	of	thumb,	the	residuals	must	always	be	bounded	within	a	±3σ	
region	of	uncertainty	

–  This	measures	the	“health”	of	the	filter	
•  Many	propagation	cycles	can	happen	between	updates	
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Using	the	Kalman	Filter	for	Mobile	Robots	

•  Sensor	modeling	
–  The	odometry	estimate	is	not	a	reflection	of	the	robot’s	control	
system	is	rather	treated	as	a	sensor	

–  Instead	of	directly	measuring	the	error	in	the	state	vector	(such	as	
when	doing	tracking),	the	error	in	the	state	must	be	estimated	

–  This	is	referred	to	as	the	Indirect	Kalman	Filter	
•  State	vector	for	robot	moving	in	2D	

–  The	state	vector	is	3x1:	[x,y,θ]	
–  The	covariance	matrix	is	3x3	

•  Problem:	Mobile	robot	dynamics	are	NOT	linear	
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Problems	with	the		
Linear	Model	Assumption	

•  Many	systems	of	interest	are	highly	non-linear,	
such	as	mobile	robots	

•  In	order	to	model	such	systems,	a	linear	process	
model	must	be	generated	out	of	the	non-linear	
system	dynamics	

•  The	Extended	Kalman	filter	is	a	method	by	which	
the	state	propagation	equations	and	the	sensor	
models	can	be	linearized	about	the	current	state	
estimate	

•  Linearization	will	increase	the	state	error	residual	
because	it	is	not	the	best	estimate	
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Approximating	Robot	Motion	Uncertainty	
with	a	Gaussian	
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Linearized	Motion	Model	for	a	Robot	
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From a robot-centric 
perspective, the velocities 
look like this: 
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perspective, the 
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Linearized	Motion	Model	for	a	Robot	
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The indirect Kalman filter derives the pose equations from the 
estimated error of the state: 

In order to linearize the system, the following small-angle  
assumptions are made: 
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Now, we have to compute the covariance matrix propagation 
equations. 
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Calculation of 
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Linearized	Motion	Model	for	a	Robot	
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From the error-state propagation equation, we can obtain the 
State propagation and noise input functions F and G : 

From these values, we can easily compute the standard covariance 
propagation equation: 
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Covariance	Estimation	
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Propagation	
•  Finally,	for	a	mobile	robot	EKF	propagation	step	we	
have:	
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Sensor	Model	for	a	Robot	with	a	Perfect	Map	
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From the robot, the measurement 
looks like this: 

The measurement equation is nonlinear and must also be linearized! 
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Update	
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r = z− ẑ

S = H *P*HT + R

K = P*HT *S−1

xt+1/t+1 = xt/t+1 +K * r
P = (I −K *H )*P*(I −K *H )T +K *R*KT

P = P +P
T

2



See	Matlab	Examples	
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Sensor	Model	for	a	Robot	with	a	Perfect	Map	
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From the robot, the 
measurement looks 
like this: 

From a global 
perspective, the 
measurement looks 
like: 
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The measurement equation is nonlinear and must also be linearized! 
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Sensor	Model	for	a	Robot	with	a	Perfect	Map	
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Now, we have to compute the linearized sensor function.  Once 
again, we make use of the indirect Kalman filter where the error in 
the reading must be estimated. 

In order to linearize the system, the following small-angle  
assumptions are made: 
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The final expression for the error in the sensor reading is: 
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Updating	the	State	Vector	
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Extended	Kalman	Filter	for	SLAM	

•  State	vector	
– Expanded	to	contain	entries	for	all	landmarks	
positions:	

– State	vector	can	be	grown	as	new	landmarks	are	
discovered	

– Covariance	matrix	is	also	expanded	
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Extended	Kalman	Filter	for	SLAM	

•  Kinematic	equations	for	landmark	
propagation	

tLtL

tLtL

tLtL

ttt

tVttt

tVttt

ii

ii

ii

t

t

t

yy

xx

tw

twVyy

twVxx

φφ

δωφφ

φδ

φδ

ω

ˆˆ

ˆˆ

ˆˆ
)(ˆˆ

ˆsin)(ˆˆ

ˆcos)(ˆˆ

1

1

1

1

1

1

=

=

=

++=

++=

++=

+

+

+

+

+

+

47 CSCE-574 Robotics 



Extended	Kalman	Filter	for	SLAM	

•  Sensor	equations	for	update:	

•  Very	powerful	because	covariance	update	
records	shared	information	between	landmarks	
and	robot	positions	
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EKF	for	SLAM	
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EKF	for	SLAM	
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Enhancements	to	EKF	

•  Iterated	Extended	Kalman	Filter	

Iterate state update  
equation until  
convergence 
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Enhancements	to	the	EKF	

•  Multiple	hypothesis	tracking	
– Multiple	Kalman	filters	are	used	to	track	the	data	
– Multi-Gaussian	approach	allows	for	representation	of	
arbitrary	probability	densities	

–  Consistent	hypothesis	are	tracked	while	highly	inconsistent	
hypotheses	are	dropped	

–  Similar	in	spirit	to	particle	filter,	but	orders	of	magnitude	
fewer	filters	are	tracked	as	compared	to	the	particle	filter	
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