
Ioannis Rekleitis

Particle	Filters	

Bayesian	Filter	

•  Estimate	state	x	from	data	Z	
– What	is	the	probability	of	the	robot	being	at	x?	

•  x	could	be	robot	location,	map	information,	locations	of	
targets,	etc…	

•  Z	could	be	sensor	readings	such	as	range,	actions,	
odometry	from	encoders,	etc…)	

•  This	is	a	general	formalism	that	does	not	depend	on	
the	particular	probability	representation	

•  Bayes	filter	recursively	computes	the	posterior	
distribution:	

)|()(TTT ZxPxBel =
CSCE-574 Robotics 2

Iterating	the	Bayesian	Filter	
•  Propagate	the	motion	model:	

•  Update	the	sensor	model:	

∫ −−−−− = 1111)(),|()(tttttt dxxBelxaxPxBel

)()|()(tttt xBelxoPxBel −=η

Compute the current state estimate before taking a sensor reading by
integrating over all possible previous state estimates and applying the
motion model

Compute the current state estimate by taking a sensor reading and
multiplying by the current estimate based on the most recent motion
history

CSCE-574 Robotics 3

Mobile	Robot	Localization	
(Where	Am	I?)	

•  A	mobile	robot	moves	while		collecting	sensor	
measurements	from	the	environment.		

•  Two	steps,	action	and	sensing:		
– Prediction/Propagation:	what	is	the	robots	pose	x	after	
action	A?	

– Update:	Given	measurement	z,	correct	the	pose	x’	
•  What	is	the	probability	density	function	(pdf)	that	
describes	the	uncertainty	P	of	the	poses	x	and	x’?		

(X,Y,θ)

CSCE-574 Robotics 4

State	Estimation	

),|(1 αtt xxP −
+

•  Propagation	

•  Update	

),|(111 +
−
+

+
+ ttt zxxP

CSCE-574 Robotics 5

Traditional	Approach		Kalman	Filter	

•  Optimal	for	linear	systems	with	Gaussian	noise	
•  Extended	Kalman	filter:	
– Linearization	
– Gaussian	noise	models	

•  Fast!	

CSCE-574 Robotics 6

Monte-Carlo	State	Estimation	
(Particle	Filtering)	

•  Employing	a	Bayesian	Monte-Carlo	simulation	
technique	for	pose	estimation.		

•  A	particle	filter	uses	N	samples	as	a	discrete	
representation	of	the	probability	distribution	function	
(pdf)	of	the	variable	of	interest:		

				where	xi	is	a	copy	of	the	variable	of	interest	and	wi	is		a	
weight	signifying	the	quality	of	that	sample.	
		

	In	our	case,	each	particle	can	be	regarded	as	an	
alternative	hypothesis	for	the	robot	pose.	

CSCE-574 Robotics

]1:,[NiwS ii !
"

== x

7

Particle	Filter	(cont.)	

The	particle	filter	operates	in	two	stages:	
•  Prediction:	After	a	motion	(α)	the	set	of	particles	

S	is	modified	according	to	the	action	model		

						where	(ν)	is	the	added	noise.		
	
						The	resulting	pdf	is	the	prior	estimate	before	

collecting	any	additional	sensory	information.		
	

),,(ναSfS =ʹ

CSCE-574 Robotics 8

Particle	Filter	(cont.)	

•  Update:	When	a	sensor	measurement	(z)	becomes	
available,		the	weights	of	the	particles	are	updated	
based	on	the	likelihood	of	(z)	given	the	particle	xi	

			The	updated	particles		represent	the	posterior	
distribution	of	the	moving	robot.		

iii wzPw)|(x!=ʹ

CSCE-574 Robotics 9

Remarks:	

•  In	theory,	for	an	infinite	number	of	particles,	
this	method	models	the	true	pdf.	

•  In	practice,	there	are	always	a	finite	number	of	
particles.	

CSCE-574 Robotics 10

For	finite	particle	populations,	we	must	focus	population	mass	
where	the	PDF	is	substantive.	
• Failure	to	do	this	correctly	can	lead	to	divergence.	
• Resampling	needlessly	also	has	disadvantages.	

One	way	is	to	estimate	the	need	for	resampling	based	on	the	
variance	of	the	particle	weight	distribution,	in	particular	the	
coefficient	of	variance:	

Resampling	

2

1

2
2

2

1

)1)((1
))((
))(var(

t
t

M

i
t

t

t
t

cv
MESS

iMw
MiwE

iwcv

+
=

−== ∑
=

CSCE-574 Robotics 11

Prediction:	Odometry	Error	Modeling	
•  Piecewise	linear	motion:	a	simple	example.	
•  Rotation:	Corrupted	by	Gaussian	Noise.	
•  Translation:	Simulated	by	multiple	steps.	Each	step	models	
translational	and	rotational	error.	

Single	step:	
Small	rotational	error	
(drift)	before	and	after	
the	translation.	
Translational	error	
proportional	to	the	
distance	traveled.	

All	errors	drawn	
from	a	Normal	
Distribution.	CSCE-574 Robotics 12

Odometry	Error	Modeling	

CSCE-574 Robotics 13

Odometry	Error	Modeling	
P
r
e
d
i
c
t
i
o
n

CSCE-574 Robotics 14

Odometry	Error	Modeling	
P
r
e
d
i
c
t
i
o
n

CSCE-574 Robotics 15

Odometry	Error	Modeling	
P
r
e
d
i
c
t
i
o
n

CSCE-574 Robotics 16

Odometry	Error	Modeling	
P
r
e
d
i
c
t
i
o
n

CSCE-574 Robotics 17

Prediction-Only	Particle	Distribution	

CSCE-574 Robotics 18

Propagation	of	a	discrete	time	
system	(δt=1	sec)	

tw

twvyy

twvxx

t

t

t

t
t
i

t
i

t
ivt

t
i

t
i

t
ivt

t
i

t
i

δωφφ

φδ

φδ

ω)(

sin)(

cos)(

1

1

1

++=

++=

++=

+

+

+

Where									is	the	additive	noise	for	the	linear	velocity,	and	
	
										is	the	additive	noise	for	the	angular	velocity	

tv
w

t
wω

CSCE-574 Robotics 19

Continuous	motion	example	
•  Dt=1sec	
•  Plotting	1	sample/sec	all	the	particles	every	5	sec	
•  Constant	linear	velocity	
•  Angular	velocity		
			changes	randomly	
			every	10	sec	

CSCE-574 Robotics 20

Continuous	motion	example	

CSCE-574 Robotics 21

Prediction	Examples	Using	a	PF	

Piecewise	linear	motion		
	 	(Translation	and	Rotation)	
– Command	success	70%	
– Start	at	[-8,0,0]	
– Translate	by	4m	
– Rotate	by	30o		
– Translate	by	6m	

CSCE-574 Robotics 22

Start	[-8,0,0o]	

CSCE-574 Robotics 23

Translate	by	4m	

30% stayed

CSCE-574 Robotics 24

Rotate	by	30o		

30% stayed

CSCE-574 Robotics 25

Translate	by	6m	

CSCE-574 Robotics 26

Propagation	

•  Known	position,	known	orientation	
•  Bounded	linear	velocity	[0.5	0.7]	m/sec	
•  Bounded	angular	velocity		
•  Run	200	sec.	
•  Plotting	every	twenty	fifth	sec.	

CSCE-574 Robotics 27

Bounded	Velocities	

CSCE-574 Robotics 28

20 40 60 80 100 120

-40

-30

-20

-10

0

10

20

30

40

[] sec/ 01.001.0 rad−∈ω

-50 0 50 100 150
-100

-80

-60

-40

-20

0

20

40

60

80

100

[] sec/ 1.01.0 rad−∈ω

-100 -50 0 50 100 150

-100

-80

-60

-40

-20

0

20

40

60

80

100

[] sec/ 2.02.0 rad−∈ω

Propagation	

•  Known	position,	unknown	orientation	
•  Bounded	linear	velocity	[0.5	0.7]	m/sec	
•  Bounded	angular	velocity	[-0.1	0.1]	rad/sec	
•  Run	200	sec.	
•  Plotting	every	twenty	fifth	sec.	

CSCE-574 Robotics 29

Propagation	

CSCE-574 Robotics 30

-150 -100 -50 0 50 100 150

-100

-50

0

50

100

Propagation	
•  Known	position,	known	orientation	
•  Bounded	linear	velocity	[0.0	0.5]	m/sec	
•  Bounded	angular	velocity	[-0.01	0.01]	rad/sec	
•  Run	200	sec.	
•  Plotting	every	twenty	fifth	sec.	

•  For	a	particle	to	stay	at	the	origin,	it	has	to	draw	
zero	velocity	25	times	in	the	row.	

CSCE-574 Robotics 31

Bounded	velocities	

CSCE-574 Robotics 32

5 10 15 20 25 30 35 40 45 50 55

-15

-10

-5

0

5

10

15

20

Update	Examples	Using	a	PF	

CSCE-574 Robotics 33

Environment	with	two	red	doors	
(uniform	distribution)	

CSCE-574 Robotics 34

Environment	with	two	red	doors	
(Sensing	the	red	door)	

CSCE-574 Robotics 35

Sensing	four	walls	

CSCE-574 Robotics 36

Four	possible	areas	

CSCE-574 Robotics 37

Update	Range	only	

CSCE-574 Robotics 38

()
ρσ
ρρ

ρπσ

2

2

1

2

2
1 ri

eww t
i

t
i

−
−

− ⋅=

Update	Range	only	

CSCE-574 Robotics 39

Update	Range	only	

CSCE-574 Robotics 40

Update	Range	only	

CSCE-574 Robotics 41

Update	Range	only	

CSCE-574 Robotics 42

Update	Bearing	only	

CSCE-574 Robotics 43

()
ϕσ
ϕϕ

ϕπσ

2

2

1

2

2
1 ri

eww t
i

t
i

−
−

− ⋅=

Update	Bearing	only	

CSCE-574 Robotics 44

Update	Bearing	only	

CSCE-574 Robotics 45

Update	Bearing	only	

CSCE-574 Robotics 46

Update	Bearing	only	

CSCE-574 Robotics 47

Update	Bearing	only	

CSCE-574 Robotics 48

Update	Bearing	only	

CSCE-574 Robotics 49

Update	Range	and	Bearing	

CSCE-574 Robotics 50

() ()
ρϕ σ
ρρ

ρ

σ
ϕϕ

ϕ πσπσ

2

2

2

2

1

22

2
1

2
1 riri

eeww t
i

t
i

−
−

−
−

− ⋅⋅=

Update	Compass	only	

CSCE-574 Robotics 51

()
ϑσ
ϑϑ

ϑπσ
2

2

1

2

2
1 ri

eww t
i

t
i

−
−

− ⋅=

Update	Compass	only	

CSCE-574 Robotics 52

Update	Compass	only	

CSCE-574 Robotics 53

Cooperative	Localization	

•  Pose		of	the	moving	robot	is	
estimated	relative	to	the	
pose	of	the	stationary	robot.	
Stationary	Robot	observes	
the	Moving	Robot.	

()
()
()() ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−

++

++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=+

s

ss

ss

m

m

m

m y
x

y
x

k

est

est

est

est

θθφπ

θθρ

θθρ

θ

sin
cos

)1(x

Robot Tracker Returns:

<ρ,θ,φ>

CSCE-574 Robotics 54

Laser-Based	Robot	Tracker	

Robot Tracker Returns:
<ρ,θ,φ>

CSCE-574 Robotics 55

Tracker	Weighting	Function	

() () ()
2

2

2

2

2

2

222 2
1

2
1

2
1 φθρ σ

φφ

φ

σ
θθ

θ

σ
ρρ

ρ πσπσπσ

iii

eeeW
−−−−−−

=

U
p
d
a
t
e

56 CSCE-574 Robotics

Example:	Prediction	

CSCE-574 Robotics 57

Example:	Update	

CSCE-574 Robotics 58

Example:	Prediction	

CSCE-574 Robotics 59

Example:	Update	

CSCE-574 Robotics 60

Variations	on	PF	

•  Add	some	particles	uniformly	
•  Add	some	particles	where	the	sensor	indicates	
•  Add	some	jitter	to	the	particles	after	propagation	
•  Combine	EKFs	to	track	landmarks	

CSCE-574 Robotics 61

Keep	in	Mind:	
•  The	number	of	particles	increases	with	the	dimension	of	the	state	space	

CSCE-574 Robotics 62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Complexity	results	for	SLAM	

•  n=number	of	map	features		
•  Problem:	naïve	methods	have	high	complexity	
– EKF	models	O(n^2)	covariance	matrix	
– PF	requires	prohibitively	many	particles	to	
characterize	complex,	interdependent	distribution	

•  Solution:	exploit	conditional	independencies	
– Feature	estimates	are	independent	given	robot’s	path	

CSCE-574 Robotics 63

Generating	Random	Numbers	
From	a	uniform	RNG	produce	samples	following	the	Normal	distribution:	
The	most	basic	form	of	the	transformation	looks	like:		
y1	=	sqrt(-	2	ln(x1))	cos(2	pi	x2)		
y2	=	sqrt(-	2	ln(x1))	sin(2	pi	x2)		
The	polar	form	of	the	Box-Muller	transformation	is	both	faster	and	more	
robust	numerically.	The	algorithmic	description	of	it	is:		
float	x1,	x2,	w,	y1,	y2;		
do	{		
					x1	=	2.0	*	ranf()	-	1.0;	x2	=	2.0	*	ranf()	-	1.0;		
					w	=	x1	*	x1	+	x2	*	x2;		
}	while	(w	>=	1.0);	
	w	=	sqrt((-2.0	*	ln(w))	/	w);		
y1	=	x1	*	w;		
y2	=	x2	*	w;		
See:	http://www.taygeta.com/random/gaussian.html	

CSCE-574 Robotics 64

Rao-Blackwellization	

Figure from [Montemerlo et al – Fast SLAM]
CSCE-574 Robotics 65

RBPF	Implementation	for	SLAM	

•  2	steps:	
– Particle	filter	to	estimate	robot’s	pose	
– Set	of	low-dimensional,	independent	EKF’s	(one	per	
feature	per	particle)	

•  E.g.	FastSLAM	which	includes	several	
computational	speedups	to	achieve	O(M	logN)	
complexity	(with	M	number	of	particles)	

CSCE-574 Robotics 66

Questions	

•  For	more	information	on	PF:	

http://www.cim.mcgill.ca/~yiannis/ParticleTutorial.html	

CSCE-574 Robotics 67

