
Ioannis Rekleitis

Con$iguration	
 Space	

Configuration Space

Configuration Space

Definition
 A robot configuration is a specification
of the positions of all robot points
relative to a fixed coordinate system

 Usually a configuration is expressed as
a “vector” of position/orientation
parameters

CSCE-574 Robotics

What is a Path?

qgoal qinit

qgoal
qinit

CSCE-574 Robotics

What is a Path?

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

q1

q1

q2

q2

CSCE-574 Robotics

Tool: Configuration Space
(C-Space C)

CSCE-574 Robotics

Articulated Robot Example

q1

q2

q = (q1,q2,…,q10)

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Configuration Space of a Robot

 Space of all its possible configurations
 But the topology of this space is usually
not that of a Cartesian space

C = S1 x S1

CSCE-574 Robotics

Parameterization of SO(3)
•  Euler angles: (φ,θ,ψ)

•  Unit quaternion:
 (cos θ/2, n1 sin θ/2, n2 sin θ/2, n3 sin θ/2)

x

y

z

x
y

z

φ

x

y

z

θ

x

y

z

ψ

1 ! 2 ! 3 ! 4

CSCE-574 Robotics

A welding robot

CSCE-574 Robotics

A Stuart Platform

CSCE-574 Robotics

Barrett WAM arm on a mobile platform

CSCE-574 Robotics

Configuration Space Obstacle

CSCE-574 Robotics

Two link path

CSCE-574 Robotics

2D Rigid Object

CSCE-574 Robotics

The Configuration Space

CSCE-574 Robotics

Moving a piano

CSCE-574 Robotics

Parameterization of Torus

CSCE-574 Robotics

Linear-Time Computation of
C-Obstacle in 2-D

(convex polygons)

CSCE-574 Robotics

Rigid Robot Translating and
Rotating in 2-D

CSCE-574 Robotics

Free and Semi-Free Paths

§  A free path lies entirely in the free
space F

§  A semi-free path lies entirely in the
semi-free space

CSCE-574 Robotics

CSCE-574 Robotics

CSCE-574 Robotics

Notion of Homotopic Paths
 Two paths with the same endpoints are
homotopic if one can be continuously deformed
into the other
 R x S1 example:

  τ1 and τ2 are homotopic
  τ1 and τ3 are not homotopic
 In this example, infinity of homotopy classes

q

q’
τ1

τ2
τ3

CSCE-574 Robotics

Connectedness of C-Space
 C is connected if every two configurations can be
connected by a path
 C is simply-connected if any two paths
connecting the same endpoints are homotopic
Examples: R2 or R3
 Otherwise C is multiply-connected
Examples: S1 and SO(3) are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes

CSCE-574 Robotics

Classes of Homotopic Free Paths

CSCE-574 Robotics

Probabilistic Roadmaps PRMs

The	
 basic	
 idea	
 behind	
 PRM	
 is	
 to	
 take	
 random	
 samples	
 from	
 the	

configura:on	
 space	
 of	
 the	
 robot,	
 tes:ng	
 them	
 for	
 whether	
 they	
 are	
 in	

the	
 free	
 space,	
 and	
 use	
 a	
 local	
 planner	
 to	
 a>empt	
 to	
 connect	
 these	

configura:ons	
 to	
 other	
 nearby	
 configura:ons.	
 The	
 star:ng	
 and	
 goal	

configura:ons	
 are	
 added	
 in,	
 and	
 a	
 graph	
 search	
 algorithm	
 is	
 applied	
 to	

the	
 resul:ng	
 graph	
 to	
 determine	
 a	
 path	
 between	
 the	
 star:ng	
 and	
 goal	

configura:ons.	

	

Kavraki,	
 L.	
 E.;	
 Svestka,	
 P.;	
 Latombe,	
 J.-­‐C.;	
 Overmars,	
 M.	
 H.	
 (1996),	
 "Probabilis:c	
 roadmaps	
 for	

path	
 planning	
 in	
 high-­‐dimensional	
 configura:on	
 spaces",	
 IEEE	
 Transac:ons	
 on	
 Robo:cs	
 and	

Automa:on	
 12	
 (4):	
 566–580.	

	

CSCE-574 Robotics

Rapidly-exploring Random Trees

•  A point P in C is randomly chosen.
•  The nearest vertex in the RRT is selected.
•  A new edge is added from this vertex in the

direction of P, at distance ε.
•  The further the algorithm goes, the more

space is covered.

CSCE-574 Robotics

Rapidly-expanding Random Trees

Starting vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex ε

The vertex is in Cfree

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest point

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex ε

The vertex is in Cfree

CSCE-574 Robotics

Rapidly-expanding Random Trees

CSCE-574 Robotics

Rapidly-expanding Random Trees

Vertex randomly drawn

CSCE-574 Robotics

Rapidly-expanding Random Trees

Nearest vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

New vertex

CSCE-574 Robotics

Rapidly-expanding Random Trees

And it continues…

CSCE-574 Robotics

RRT-Connect

•  We grow two trees, one from the beginning
vertex and another from the end vertex

•  Each time we create a new vertex, we try to
greedily connect the two trees

CSCE-574 Robotics

RRT-Connect: example
Start

Goal
CSCE-574 Robotics

RRT-Connect: example

Random vertex

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example
We greedily connect the
bottom tree to our new
vertex

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

Obstacle found !

CSCE-574 Robotics

RRT-Connect: example

Now we swap roles !

CSCE-574 Robotics

RRT-Connect: example

Now we swap roles !

CSCE-574 Robotics

RRT-Connect: example

We grow the bottom tree

CSCE-574 Robotics

RRT-Connect: example

Now we greedily try to connect

And we continue…

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

CSCE-574 Robotics

RRT-Connect: example

Connection made !

CSCE-574 Robotics

RRT-Connect: example

Now we have a solution !

CSCE-574 Robotics

RRT-Connect: example

Last step: path smoothing

CSCE-574 Robotics

RRT-Connect: example

Last step: path smoothing

CSCE-574 Robotics

An RRT in 2D

Example from: http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html CSCE-574 Robotics

A Puzzle solved using RRTs
The goal is the separate the two bars from
each other. You might have seen a puzzle
like this before. The example was
constructed by Boris Yamrom, GE
Corporate Research & Development
Center, and posted as a research benchmark
by Nancy Amato at Texas A&M University.
It has been cited in many places as a one of
the most challenging motion planning
examples. In 2001, it was solved by using a
balanced bidirectional RRT, developed by
James Kuffner and Steve LaValle. There are
no special heuristics or parameters that
were tuned specifically for this problem.
On a current PC (circa 2003), it
consistently takes a few minutes to solve.

CSCE-574 Robotics

Lunar Landing

The following is an open loop trajectory that was planned in a 12-dimensional state space. The
video shows an X-Wing fighter that must fly through structures on a lunar base before entering
the hangar. This result was presented by Steve LaValle and James Kuffner at the Workshop on
the Algorithmic Foundations of Robotics, 2000.

CSCE-574 Robotics

