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Why vision?

• Passive (emits nothing).

– Discreet.

– Energy efficient.

• Intuitive.

• Powerful (works well for us, right?)

• Long and short range.

• Fast.
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So, what’s the problem?

• How hard is vision? Why do we think is do-able?

Problems:

• Slow.

• Data-heavy.

• Impossible.

• Mixes up many factors.
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Data heavy
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BFrom GoPro HERO3+ at Barbados 2015 Field Trials



Aliasing

• Images are not actually continuous.

• The sampling (and hardware) issues lead to a 
few other minor problems.
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Aliasing
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Aliasing

• To avoid: fsampling > 2Fmax

– Nyquist Rate
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Aliasing: Moiré Patterns
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• What a camera does to the 3d world...
Shigeo Fukuda

squeezes away one dimension

Ill-posed
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• What a camera does to the 3d world...
Shigeo Fukuda

Ill-posed
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Ill-posed

• In trying to extract 3d structure from 2d images, 
vision is an ill-posed problem.
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• In trying to extract 3d structure from 2d images, 
vision is an ill-posed problem.
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Ill-posed

• In trying to extract 3d structure from 2d images, 
vision is an ill-posed problem.

– An image isn’t enough to disambiguate the many 
possible 3d worlds that could have produced it.
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Difficult scenarios

• In certain settings, such as the underwater, 
robotic vision is particularly challenging

– Different lighting conditions

– Color loss

– Hazing and blur

– Texture loss
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doesn’t need a full interpretation of available images

does need information about what to do...

•avoiding obstacles (or predators)

•pursuing objects

•localizing itself

•Mapping

•finding targets

•reasoning about the world …

“This is Prof. X in his office offering me a cup of iced tea.”

“Run Away!!”

reactive

deliberative

environmental 
interactions

What does a robot need ?
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Key problems

• Recognition:

– What is that thing in the picture?

– What are all the things in the image?

• Scene interpretation

– Describe the image?

• Scene “reconstruction”:

– What is the 3-dimensional layout of the scene?

– What are the physical parameters that gave rise to the image?

– What is a description of the scene?

Notion of an “inverse problem.”
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(1) Image streams

simplified via generality

simplified via specificity

(2) Stereo vision (or beyond...)

(3) Incorporating vision within robot control

Visual “servoing”3d reconstruction

A brief overview of robotic vision processing...

Robot vision sampler
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3d reconstruction
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Visual Servoing
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Computer vision algorithms

• Image processing

• Geometric computer vision

• Semantic computer vision

• It is fundamental first to understand image 
formation
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Pinhole camera model
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Source: mathworks.com



center of projection

focal length

object

image plane

Camera Geometry

3D2D transformation: perspective projection
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canonical axes

f

pixel coordinates

optical axis

Add coordinate systems in order to 
describe feature points... 

z

x

y

u
v

object coordinates

v 
(row)

u (col)

principal 
point

Z

x

y

at the C.O.P.

Coordinate Systems
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f

pixel coordinates

z

x

y

u
v

object coordinates

(X,Y,Z)   in canonical coordsimage can. coords: (x,y)

canonical axes

Coordinate Systems
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x =   
f X   
Z  y =   

f Y   
Z  

a nonlinear transformation

f

pixel coordinates

z

x

y

u
v

object coordinates

(X,Y,Z)   in canonical coordsimage can. coords: (x,y)

canonical axes

goal: to recover information about (X,Y,Z) from 
(x,y)

From 3d to 2d
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Camera Calibration

• Camera Model
– [u v 1] Pixel coords

– World coords

• Intrinsic Parameters
– focal lengths in pixels

– skew coefficient

– focal point

• Extrinsic Parameters
– Rotation and Translation
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Distortion

• Different types of lens distortion

– Radial distortion

– Tangential distortion
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Source: mathworks.com



Camera Calibration
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Existing packages in MATLAB, OpenCV, etc



Camera Calibration
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ROS+OpenCV



Camera Calibration
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MATLAB



Rectified Image Sample
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Unrectified Rectified

From Clearpath Husky Axis M1013 camera



Rectified Image Sample
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Unrectified Rectified

From Parrot ARDrone 2.0 front camera



Rectified Image Sample
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Unrectified Rectified

From GoPro HERO3+ at Barbados 2015 Field Trials



ReRectified Image Sample
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Rectified ReRectified

From Aqua front camera at Barbados 2013 Field Trials



Gaussian Blur
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Gaussian Blur and Noise
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Gaussian Blur, Noise, Sobel
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Image Downsampling
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Thresholded image
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Edge detection
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Correspondence Problem
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From Raspberry PI camera at Barbados 2016 Field Trials



Correspondence
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From I1 From I2

?



Fiduciary Markers/Fiducial

Fourier Tag
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Good Feature

• Invariant to transformations

• Unique

• Efficient to compute

• Good precision and high recall

• Several Alternatives:
– Harris Corners (OpenCV) 

– SURF (OpenCV)

– SIFT

– ORB

– etc
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Harris Corners
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Harris Corners
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SIFT
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SIFT
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SURF
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SURF
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ORB

59CSCE 574: Robotics



ORB
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Outliers
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Outliers Inliers



Mosaic
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3D Sparse reconstruction
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3D Sparse reconstruction
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Internet Photos 
(“Colosseum”)

Reconstructed 3D cameras and 
points

Source: https://grail.cs.washington.edu/rome/



Feature quality
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Feature quality
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Feature quality
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Feature quality
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Egomotion
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Visual Odometry/Structure from Motion
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Image 
stream

Feature 
detection

Feature 
matching 
(tracking)

Motion 
estimation

Optimization



Optical Flow

• Definition:

– the pattern of apparent motion of objects, surfaces, 
and edges in a visual scene caused by the relative 
motion between an observer (an eye or a camera) and 
the scene.
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Optical Flow Field
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Information about image motion rather than the scene.    
This is a classic reconstruction problem.  

This next step might be to use the image motion to infer scene 
motion, robot motion or 3D layout.

time sequence of images

Optical flow
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Information about scene motion rather than the scene.

an “image cube”

I(x,y,t)

Optical flow
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Information about scene motion rather than the scene.

optical flow How ?

Optical flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

90 70 40 40 25

90 70 40 40 25

90 70 40 40 20

70 50 40 30 15

I(x,y,t)

Optical Flow
• By measuring the direction that intensities are moving...

• We can estimate things...
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

90 70 40 40 25

90 70 40 40 25

90 70 40 40 20

70 50 40 30 15

By measuring the direction that intensities are moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We can estimate things ... = Ix dx
dI at (0,0,0)

Optical Flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

90 70 40 40 25

90 70 40 40 25

90 70 40 40 20

70 50 40 30 15

By measuring the direction that intensities are moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We can estimate things like = Ix = =
I(1,0,0) - I(0,0,0)I

xdx
dI at (0,0,0)

1 - 0
= -30

Optical Flow
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99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

90 90 70 40 25

90 70 40 40 25

90 70 40 40 25

90 70 40 40 20

70 50 40 30 15

By measuring the direction that intensities are moving...

I(2,-1,0)

I(0,0,1)

I(0,0,0)

I(x,y,t)
I(x,y,0)

I(x,y,1)

We can estimate things like
= Ix dx

dI = Iydy
dI = It dt

dI so...

Optical Flow



Let  I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

I(x,y,t)  =  I(x + dx, y + dy, t + dt)

(x,y,t)
99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let  I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

I(x,y,t)  =  I(x + dx, y + dy, t + dt)

Reminder:      f(x + dx) = f(x) + f ’(x) dx + f ’’(x) dx2 /2  +  ... 

(x,y,t)
99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let  I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

I(x,y,t)  =  I(x + dx, y + dy, t + dt)

I(x,y,t)  =  I(x,y,t) +  Ix dx + Iy dy + It dt + 2nd deriv. + higher

Reminder:      f(x + dx) = f(x) + f ’(x) dx + f ’’(x) dx2 /2  +  ... 

(x,y,t)
99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let  I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

I(x,y,t)  =  I(x + dx, y + dy, t + dt)

I(x,y,t)  =  I(x,y,t) +  Ix dx + Iy dy + It dt + 2nd deriv. + higher

0  =  Ix dx + Iy dy + It dt

Reminder:      f(x + dx) = f(x) + f ’(x) dx + f ’’(x) dx2 /2  +  ... 

ignore these terms

(x,y,t)
99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

Measuring Optical Flow
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Let  I(x,y,t) be the sequence of images.

Simplest assumption (constant brightness constraint):

I(x,y,t)  =  I(x + dx, y + dy, t + dt)

I(x,y,t)  =  I(x,y,t) +  Ix dx + Iy dy + It dt + 2nd deriv. + higher

0  =  Ix dx + Iy dy + It dt

Reminder:      f(x + dx) = f(x) + f ’(x) dx + f ’’(x) dx2 /2  +  ... 

ignore these terms

-It =  Ix + Iydt
dx

dt
dy

intensity-flow equation

(x,y,t)
99 90 90 70 40

95 90 70 40 40

90 90 70 40 40

90 90 70 40 40

90 70 50 40 30

good and bad...

Measuring Optical Flow
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-It =  Ix + Iydt
dx

dt
dy

• The intensity-flow equation provides only one constraint 
on two variables ( x-motion and y-motion)

It is only possible to find optical flow in one 
direction...

The “aperture” problem
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It is only possible to find optical flow in one direction...
at any single point in the image !

Smoothing can be done by incorporating neighboring points’ information.

img1 img2

raw 
optical 

flow

smoothed 
for ten 
iterations

The “aperture” problem
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Observations & Warnings

• Assume the scene itself is static.

• Find matching chunks in the images.

• An instance of correspondence.

BUT

• World really isn’t static.

• Lightning might change even in a static scene.

87CSCE 574: Robotics



Features vs Optical Flow

• Feature-based methods
– Detect features (corners, textured areas), extract descriptors, and 

track them
– Sparse motion fields, but possibly robust tracking
– Suitable especially when image motion is large (10s of pixels)

• Direct methods (optical flow)
– Directly recover image motion from spatio-temporal image 

brightness variations
– Global motion parameters directly recovered without an 

intermediate feature motion calculation
– Dense motion fields, but more sensitive to appearance variations
– Suitable for video and when image motion is small (< 10 pixels)
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Camera and IMU
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From drifter with Raspberry PI Camera and Pololu MinIMU-9 v3 at Barbados 2016 Field Trials



• If interpreting a single image is difficult... What about more ?!

multiple cameras

multiple times

A Vision “solution”
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Stereo Vision: Pinhole Camera

p

focal points

image plane 

f1

image plane 

f2

O2

O1
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Stereo Vision: Pinhole Camera

p

focal points

image plane 

f1

p’1

image plane 

f2

O2

O1
p’2
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Stereo Vision: Pinhole Camera

p

focal points

image plane 

f1

p’1

image plane 

f2

(part of) 

epipolar plane

epipolar line

O2

O1
p’2
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Stereo Vision: Pinhole

x
2

x
1

px1

disparity: d=px1-px2

px2

baseline b

D

Depth: D=fb/d

f
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Stereo Vision: Pinhole

p

x
2

x
1

px1

px2

D

f

a1

a2

q2

q1

q2

q1
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Baseline 

•What’s the optimal baseline?
– Too small:  large depth error
– Too large:  difficult search problem
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Image plane

Small Baseline Large Baseline

Pixel size

O1 O2 O1 O2

p



Baseline
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GoPro 3D HERO System source: http://www.cvlibs.net/datasets/kitti

b=3.2 cm b=54 cm



Depth Map in a City
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Matching Left and Right
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3D reconstruction
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Stereo Vision

• Large number of algorithms out there:

http://vision.middlebury.edu/stereo/

rank 43 different algorithms.
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Object recognition
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Pedestrian and car detection

Lane detection

Coral classification

source: http://www.cs.cornell.edu/courses/cs4670/2013fa/

From GoPro 3D Hero at Barbados 2015 Field Trial



Bag of words
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Object Bag of ‘words’

source: http://wikimedia.org



Appearance-based place recognition
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source: http://www.robots.ox.ac.uk/~mjc



Deep learning based classification
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Computer Vision Books

• Richard Szeliski, “Computer Vision: Algorithms 
and Applications”, Springer, 2010

• Richard Hartley and Andrew Zisserman, 
“Multiple View Geometry in Computer Vision”, 
Cambridge University Press, 2004

• David Forsyth and Jean Ponce, “Computer 
Vision: A Modern Approach”, Pearson, 2011
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Nice Classes

• Noah Snavely – Introduction to Computer Vision 
http://www.cs.cornell.edu/courses/cs4670/20
13fa/lectures/lectures.html

• Steve Seitz and Rick Szeliski – Computer Vision 
http://courses.cs.washington.edu/courses/cse5
76/08sp/
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