

CSCE 574 ROBOTICS

Locomotion

Vehicle Locomotion

Objective: convert desire to move A→B into an actual motion:

How to arrange actuators (mechanical design)

 actuator output ← → Incremental motion: Forward kinematics and inverse kinematics

Vehicle Locomotion

- Forward Kinematics:
 - (actuators actions) \rightarrow pose

- Inverse Kinematics (inverse-K):
 - pose \rightarrow (actuators actions)

pose =
$$\{x, y, \theta\}$$

Design Tradeoffs with Mobility Configurations

- 1. Maneuverability
- 2. Controllability
- 3. Traction
- 4. Climbing ability
- 5. Stability
- 6. Efficiency
- 7. Maintenance
- 8. Navigational considerations

Navigational considerations

 Some mechanisms are more accurate and reliable.

 Some are mathematically more easily predicted and controlled.

Wheeled Vehicles

CSCE-574 Robotics

Differential Drive

- 2 wheels
- 2 points of contact
- 2 degrees of freedom

- Translation and rotation are <u>coupled</u>
 - "You can't have one without the other".

-F. Sinatra

Control is a "little bit" complicated.

Differential drive

Basic design:

- 2 circular wheels
- infinitely thin
- same diameter
- mounted along a common axis
- vehicle body is irrelevant (in theory).

Idealized differential drive

side view

CSCE-574 Robotics

Differential Drive Intuition

Drive straight ahead?

Turn in place?

• (these are questions of *kinematics*)

Differential Drive Observation

 Vehicle rotation can be described relative to an axis running though the two wheels.

Forward Kinematics of Differential Drive

- Wheel rotation by angle ϕ_1 , ϕ_2
- Distance of wheel motion $D_i = \phi_i r$

CSCE-574 Robotics

Forward Kinematics: Path Integration

- D, θ determine differential motion:
 - the tangent and velocity of the vehicle motion.
- To get the path followed, you have to integrate over time.

$$x(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t) + v_{l}(t)] \cos[\theta(t)] dt$$

$$y(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t) + v_{l}(t)] \sin[\theta(t)] dt$$

$$\theta(t) = \frac{1}{d} \int_{0}^{t} [v_{r}(t) - v_{l}(t)] dt$$

Non-Holonomic Constraints

- Cannot change robot pose arbitrarily
- In D.D: Robot cannot move sideways
- Complicates planning:
 - Parallel parking...

Differential Drive Issues

- Matching of drive mechanisms
 - Tire wear (r is wrong)
 - Motors (φ is wrong)
 - Ground traction (rotation ϕ r is not motion of ϕ r)
 - Net result: motion φr is actually wrong

- Balance
 - Castor (caster) wheel

Synchronous Drive

Forward Kinematic - Synchronous Drive

Simpler:

$$x(t) = \frac{1}{2} \int_{0}^{t} v(t) \cos[\theta(t)] dt$$

$$y(t) = \frac{1}{2} \int_{0}^{t} v(t) \sin[\theta(t)] dt$$

$$\theta(t) = \int_{0}^{t} \omega(t) dt$$

 Will not suffer from mechanical mismatch compared to Diff. Drive

Mecanum Wheels

Mecanum Wheels

Ackerman (Used in Cars)

Legged Locomotion

 Started to resolve a bet between Governor of California *Leland Stanford* and a friend, in 1872.

Muybridge took the challenge

Eadweard Muybridge (April 9, 1830 – May 8, 1904)

Legged Locomotion

Copyright, 1818, by MUYBRIDGE

HE HORSE IN MOTION. Illiotrated by

AUTOMATIC ELECTRO-PHOTOGRAPH.

MUYBRIDGE.

"SALLIE GARDNER," owned by LELAND STANFORD; running at a 1.40 gait over the Palo Alto track, 19th June, 1878.

The negatives of these photographs were made at intervals of twenty-seven inches of distance, and absorbe twenty-fifth part of a second of time; they illustrate consecutive positions assumed in each twenty-seven inches of progress during a single strice of the mane. The vertical lines were twenty-seven inches spart; the toofa-satal lines represent elevations of foor inches sata. The exposure of each negative was less than the two-tho-sandally part of a second of too inches CSCE-574 Robotics

Hildebrand Gait Diagrams

Front Left
Front Right
Back Left
Back Right

Hildebrand Gait Diagrams

CSCE-574 Robotics

And so on...

CSCE-574 Robotics

Hexapod RHex

CSCE-574 Robotics

RHex: Tripod Gait

Bi-Pedal: Zero Moment Point

Dynamically Stable Gaits

- Robot is not always statically stable
- Must consider energy in limbs and body
- Much more complex to analyze
- E.G. Running:
 - Energy exchange:
 - Potential (ballistic)
 - Mechanical (compliance of springs/muscle)
 - Kinetic (impact)

