

CSCE 574 ROBOTICS

Introduction

Why Robotics?

- Manufacturing
- Labor shortage (agriculture, mining)
- Point where computers fast/cheap
- Automation of cars
 —more cars on highways
- To reach areas where no human can go

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals/Care facilities
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

Amazon bought Kiva for \$775M

- At home
- On the road
- In the sky (drones)
- In the fields (agricultural robotics)
- In resource utilization (ROV in the oil industry)
- Along power lines
- In Hospitals
- Education
- In Factories
- In Warehouses
- In Space

Robotic technology becomes affordable

TurtleBot 2

AR.DRONE

Kinect

IMU

GPS

Raspberry Pi

Lego Mindstorm

Robotics at USC

Courses	Professors
CSCE 274	Dr. O'Kane
CSCE 574	Dr. Beer
CSCE 774	Dr. Rekleitis

Recent Funding:

• **NSF CRI II-New**: Acquisition of a Heterogeneous Team of Field Robots for Coastal Environments

• PI: I. Rekleitis.

• CoPIs: J. Beer, J. O'Kane

• Funding: 520,000\$ for 3 years

Several **Surface Vehicles** 2 **Aqua** u/ w vehicles

Aerial Vehicles:

2 fixed wings

2 quadrotor

Autonomous Field Robotics Lab

Autonomous Field Robotics Lab

Develop algorithms for robotic applications

Philosophy

Evaluate performance of the deployed robots

Deploy algorithms on fielded robots

(Aerial, ground, surface, and/or underwater)

Past Projects

Past Projects

Complete Optimal Terrain Coverage using an Unmanned Aerial Vehicle

Anqi Xu Chatavut Viriyasuthee Ioannis Rekleitis

Aerial Robotics

Cooperative Localization

- Inferring relative pose
- Using vision only
- Bearing only data

Coral Reef Monitoring by Heterogeneous Robots

Marine Robotics

Capstone Project: Drift Nodes

- Measure Lagrangian current characteristics, marine life, salinity, turbidity, etc.
- Improve estimation accuracy

Marine Robotics: Drift Nodes

- Monitor, shallow coral reefs.
- Improve estimation accuracy

Marine Robotics

Underwater Situational Awareness

- Vision-INS State Estimation
- Path Planning

Mapping

Shipwreck Mapping

Shipwreck Mapping

Robot's Eye View

Underwater Cave Mapping

Shallow Coral Classification using Deep Learning

Using a CNN

Marine Robotics:

HRI with limited bandwidth

Current work in indoor Robotics

Ear-based Exploration on Hybrid Metric/Topological Maps

Q. Zhang, D. Whitney, F. Shkurti, and I. Rekleitis School of Computer Science, McGill University

Indoor: Localization with dynamic obstacles

Indoor: Communication Constrained Exploration

Syllabus

- Week 01: Syllabus presentation, Round Table, Introduction, History of Robotics. ROS
- Week 02: Actuators. Locomotion. Sensor (Tactile, Range Finders, GPS, IMU, Position Encoders).
- Week 03: Reactive Path Planning. Potential Fields. State Estimation, Bayesian Filtering
- Week 04: Particle and Kalman Filters
- Week 05: Exploration, HRI
- Week 06: Mapping: Metric Maps, Topological Maps, hybrids
- Week 07: Visibility Graphs, Bug Algorithm, Generalized Voronoi Graphs, Atlas.
- Week 08: Break
- Week 09: Semantic hierarchy of spatial representations. Configuration Space, PRMs
- Week 08: Architectures.
- Week 09: Coverage, Multi-Robot Coverage
- Week 10: Presentations
- Week 11: Presentations
- Week 12: Sensor (Vision).
- Week 13: Presentations
- Week 14: Review of Material
- Week 15: Final

Evaluation

• 5 Homeworks, 10% each: 50%

First two individual

Last three 50% team, 50% individual

• Final Examination: 30%

• Midterm: 20%

Homeworks/Projects

- Using ROS
- Using Simulations
- Using sensor data from real robots
- Using real robots (TurtleBot 2)

Contact

- http://www.cse.sc.edu/~yiannisr/
- http://www.cse.sc.edu/~yiannisr/574/2016Fall/
- Email: yiannisr@cse.sc.edu

 Office hours: 3A54 – Mon/Wed 10:30-11:30 and by appointment

