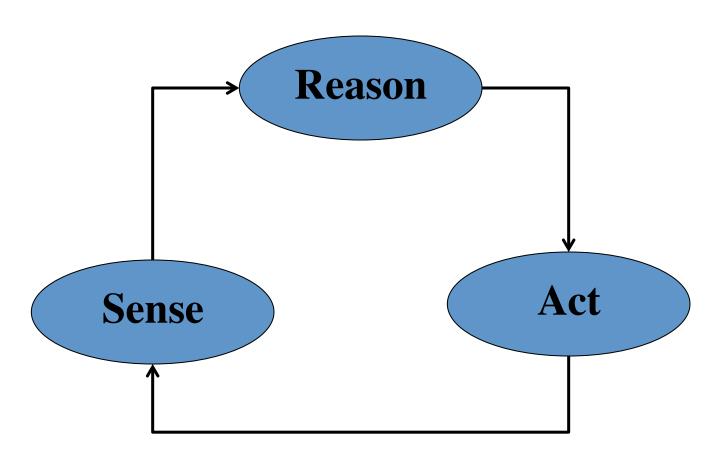


CSCE 574 ROBOTICS

Recap

Focus

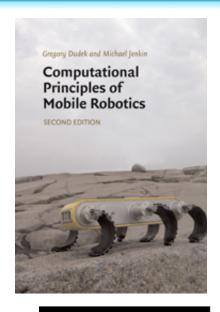
- Computational Aspects of Robotics
 - Not hardware design
 - Not control
 - Not in depth single sensor (e.g. vision)

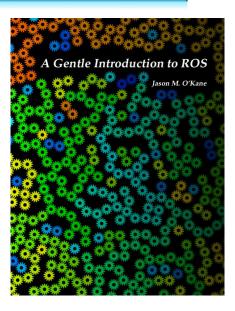


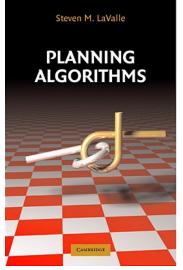
Three Main Challenges in Robotics

- 1. Where am I? (Localization)
- 2. What the world looks like? (Mapping)
 - Together 1 and 2 form the problem of *Simultaneous Localization and Mapping* (SLAM)
- 3. How do I go from **A** to **B**? (Path Planning)
 - More general: Which action should I pick next?
 (Planning)

Robot


Reading Material:


Main textbook:


Computational Principles of Mobile Robotics, G. Dudek and M. Jenkin

Additional:

A Gentle Introduction to ROS, by J. O'Kane Planning Algorithms, by S. LaValle Presentation PDFs

Barbados Field Trials 2015

Participants from:

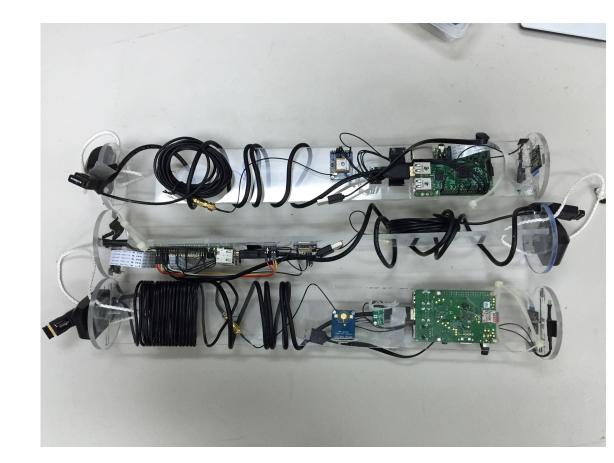
- UC Santa Cruz; (Marine Biology 101), (CubeSat)
- McGill University; G. Dudek, R. Dimitrakopoulos (Marine Robots, Stories about Gold and Diamonds Part II)
- York University; M. Jenkin
- Simon Fraser University; R. Vaughan (Adaptive Path planning for UAVs)
- Laval University; P. Giguerre (Terrain Learning,)
- University of Minnesota; S. Roumeliotis (Large Scale 3D Localization on Mobile Devices)
- Drexel University; A. Hsieh (Collaborative Tracking of Geophysical Flows)
- Clarkson University; J. Sattar (Multimodality and computational HRI algorithms, interfaces, and systems)
- UMASS-Lowel; H. Yanco (Human-Robot Interaction at the DARPA Robotics Challenge Trials)
- University of South Carolina; I. Rekleitis (Exploration)

Barbados Field Trials 2015

Experiments:

- Legged Locomotion surf entry/exit
- Drifter/boat rendezvous
- Small ROV test
- Aqua Data collection
- 6-GoPro Data collection
- Sonar/Camera Data collection
- U/W LIDAR test
- Drifter deployment and data collection
- Stereo Vision data collection

Omnidirectional Camera/Sonar

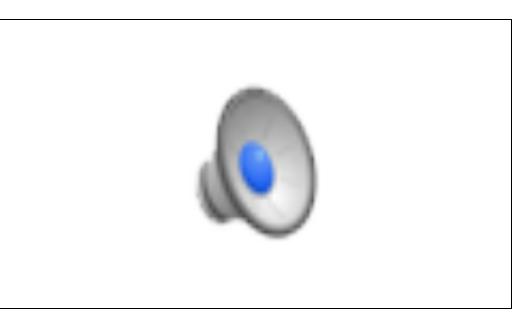


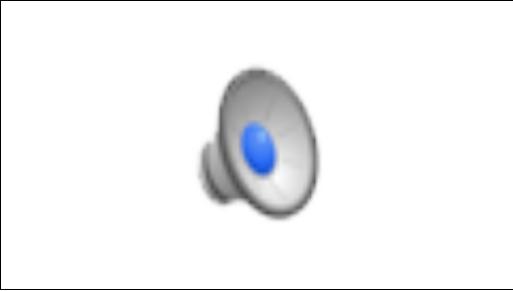
Cooperative Localization of Drift Nodes

- New Drift Nodes
- IMU, GPS, WiFi, Camera, Raspberry Pi,

Drift Nodes – Hot off the beach!

- Measure current characteristics, marine life, salinity, turbidity, etc.
- Improve accuracy estimation
- Track Aqua


Underwater State Estimation


- Employ multiple cameras
- Map U/W structures (caves, wrecks)
- During descent and ascent
- When there are few features (sand)

Stereo Vision

