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Fundamental Problems In Robotics

 What does the world looks like? (mapping)
— sense from various positions
— integrate measurements to produce map
— assumes perfect knowledge of position

* Where am I in the world? (localization)

— Sense

— relate sensor readings to a world model
— compute location relative to model

— assumes a perfect world model

* Together, these are SLAM (Simultaneous Localization and
Mapping)
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Sensors

* Proprioceptive Sensors
(monitor state of robot)
— IMU (accels & gyros)

— Wheel encoders

— Doppler radar ...

* Exteroceptive Sensors
(monitor environment)
— Cameras (single, stereo,

il

omni, FLIR ...)
— Laser scanner
— MW radar
— Sonar
— Tactile...
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Types of sensor

Specific examples

— tactile
— close-range proximity

— angular position
— infrared

— Sonar

— laser (various types)
— radar

— compasses, gyroscope:
— Force )
— GPS

— vision

}
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Orientation Representations

 Describes the rotation of
one coordinate system
with respect to another
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Attitude Representations

o "o
Rotation Matrix: AR=|r, r,
(9 variables) G

Euler Angles [roll, pitch, yaw]

(Gimbal Lock, 0-360 discontinuity,
multiple representations)

Angle-Axis [V,0]
Quaternions

qd=q,+qi+q,j+qk
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Actuators

* Hydraulic Actuators

* Pneumatic Actuators

* Air Muscle

* Shape Memory Alloy Actuators
* Electric Actuators

* Stepper Motors

2
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Locomotion

* Differential drive

* Synchronous drive

 Ackerman drive

* Legged Locomotion
— Quadrupeds

— Hexapod
— Biped

2
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Mapping
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SONAR modeling using Occupancy Grids

* The key to making accurate maps is combining lots of data.

* But combining these numbers means we have to know what they are !

What should our map contain ?

e small cells

e cach represents a bit of
the robot’s environment

* larger values => obstacle

e smaller values => free

what is in each cell of this sonar model / map ?
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Localization

* Tracking: Known initial position
* Global Localization: Unknown initial position

* Re-Localization: Incorrect known position
— (kidnapped robot problem)

CSCE 574: Robotics

11



Graphical Models, Bayes’ Rule and the Markov
Assumption

Actions

Beliefs

Observations

Observable
Hidden

p(y|x)p(x)

Bayesrule: p(x|y) =
p(y)

Markov : p(x, | x,_,a,,a,,2,,0,,2,,..
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Derivation of the Bayesian Filter

First-order Markov assumption shortens middle term:

Bel(x,) = 77| p(o, | x,) f p(x, | x,_,a,_)p(x,_ | a,_,...,00)dx,

Finally, substituting the definition of Bel(x,.,):
Bel(xt) = W(Ot | xt )fp(xt | xt—l? at—l )Bel(xt—l)dxt—l

The above is the probability distribution that must
be estimated from the robot’s data

2
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Iterating the Bayesian Filter

* Propagate the motion model:

Bel_ (Xt) =fP(xt a X1 )Bel(xt—l)dxt—l

t-12

Compute the current state estimate before taking a sensor reading
by integrating over all possible previous state estimates and
applying the motion model

* Update the sensor model:
Bel(xz) = UP(Ot | Xy )Bel- (xt)

Compute the current state estimate by taking a sensor reading
and multiplying by the current estimate based on the most recent
motion history

CSCE 574: Robotics
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Different Approaches

Kalman filters (late-60s?)

e Gaussians

e approximately linear models
* position tracking

Extended Kalman Filter
Information Filter
Unscented Kalman Filter

Multi-hypothesis (°00)

* Mixture of Gaussians

e Multiple Kalman filters

* Global localization, recovery
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Discrete approaches ('95)

* Topological representation ('95)

* uncertainty handling (POMDPs)

* occas. global localization, recovery

Grid-based, metric representation
('96)
* global localization, recovery

Particle filters (’98)

e Condensation (Isard and Blake ’98)
» Sample-based representation

* Global localization, recovery

» Rao-Blackwellized Particle Filter
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Monte-Carlo State Estimation

(Particle Filtering)

 Employing a Bayesian Monte-Carlo simulation technique
for pose estimation.

* A particle filter uses N samples as a discrete representation
of the probability distribution function (pdf ) of the variable
of interest:

S=[x,w:i=1---N]

where X. is a copy of the variable of interest and w, is a
weight signifying the quality of that sample.

In our case, each particle can be regarded as an alternative
hypothesis for the robot pose.
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Particle Filter (cont.)

The particle filter operates in two stages:

* Prediction: After a motion (a) the set of particles
S is modified according to the action model

S'=1(S,a,v)

where (v) is the added noise.

The resulting pdfis the prior estimate before
collecting any additional sensory information.

2
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Particle Filter (cont.)

* Update: When a sensor measurement (z) becomes
available, the weights of the particles are updated
based on the likelihood of (z) given the particle x.

Wlf = P(Z ‘ ii)wi

The updated particles represent the posterior
distribution of the moving robot.

2
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Resampling

For finite particle populations, we must focus population mass
where the PDF is substantive.

eFailure to do this correctly can lead to divergence.
eResampling needlessly also has disadvantages.

One way is to estimate the need for resampling based on the
variance of the particle weight distribution, in particular the

coefficient of variance:
M

» var(w,(i)) 1 N
T By MO

M
1+cv?

ESS, =
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The Kalman Filter

e Motion model is linear, noise is Gaussian...
 Sensor model is linear, noise is Gaussian...

* Each belief function is uniquely characterized
by its mean u and covariance matrix X

* Computing the posterior means computing a
new mean u and covariance X from old data
using actions and sensor readings

* What are the key limitations?

1) Unimodal distribution
2) Linear assumptions

X
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What we know...

 We know what the control inputs of our process are

— We know what we’ve told the system to do and have a model for what the
expected output should be if everything works right

* We don't know what the noise in the system truly is
— We can only estimate what the noise might be and try to put some sort of upper

bound on it
 When estimating the state of a system, we try to find a set of
values that comes as close to the truth as possible

— There will always be some mismatch between our estimate of the system and the
true state of the system itself. We just try to figure out how much mismatch there
is and try to get the best estimate possible
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Kalman Filter Components
(also known as: Way Too Many Variables...)

NZ
)

Linear discrete time dynamic system (motion model)

State Control input Process noise

N

Xyl = F;xt + Btut + Gth‘

/SN

State transition Control input Noise input
function function function with covariance Q

Measurement equation (sensor model)

Sensor reading State Sensor noise with covariance R
\ /
Zt+1 = t+1xt+1 + nt+1
Sensor function Note:Write these down!!!
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Computing the MMSE Estimate of the
State and Covariance

What is the minimum mean square error estimate
of the system state and covariance?

= F,x,, + Bu, Estimate of the state variables

= Ht+1x

t+1|t

N>

Estimate of the sensor reading

t+1)t t+1)t

B, =F EVF + GtQtG,T Covariance matrix for the state
S..=H_P, H. . +R

n LA Covariance matrix for the sensors

r+1

Sk
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The Kalman Filter...

Propagation (motion model):

X, =X, +Bu,
T
B, = Fpt/zF +G,0,G

Update (sensor model):

2t+1 = Ht+15et+1/t
rt+1 = Zt+1 - 2t+1
St = Ht+1])t+1/tH 1T + Rt+1
Kt+1 Pt+1/th+1 S
£t+l/t+1 t+1/t + Kt+1 t+1
I)t+1/t+1 = })t+1/t _})t+1/th+1 St+1_1Ht+1I)t+1/t

Sk
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.but what does that mean in English?!?

Propagation (motion model):

X1 =Fx X, + B U - State estimate is updated from system dynamics
+

T . .
- Uncertainty estimate GROWS
P,,.,=FP,F' +GOG, ty

t+1/t t/t

Update (sensor model):

S 5 - Compute expected value of sensor readin
Zi = Ht+1xt+l/t P P g
Vo =2, =2, - Compute the difference between expected and “true”
+ + +
r - Compute covariance of sensor readin
St+1 = Ht+1Pt+1/tH a T Rt+1 P J
K, B v H, S - Compute the Kalman Gain (how much to correct est.)
+ + +
)et+1/t+1 = t+1/t + Kt+1 r+1 - Multiply residual times gain to correct state estimate
-1 . .
13t+1/t+1 = 1)1‘+1/t - 131+1/th+1 St+1 Ht+113t+1/t B Uncertamty estimate SHRINKS
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Kalman Filter Block Diagram

A
X1 K o M
+ correction X | @"'— SENSORS
( :) Kr) k y
X, - Kk
state|estimate yk !
after thelmeasurements K X
k
KINEMATIC
MODEL OF
KALMAN
THE SYSTEM GAIN
State estimate
ikl PLANT
MODEL OF measurement estimate
THE SENSORS y u
k

A
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Calculation of 4.,

¢t+1 = ¢t+1 - ¢t+1
=@ + w,At - ¢ft —(w, +w, At
= Zt -w, At

/'\V_\\\Zi
@ CSCE 574: Robotics

27



’xt+1 = xt+1 - xt+1

Calculation of 5 _ = 5~

=X, +v,Atcos(¢,)—x, — (v, —w,)At cos(¢?t)
=X, —X, +Vv,Atcos(g,) - v,At cos(¢?t) +w, At cos(¢?t)
X, +Vv,At cos(¢7t + ¢?t) —v,At cos(¢?t) +w At cos(¢?t)
X, + vtAt[cos(%) cos(¢?t) + sin(¢7t) sin(¢?t)] - v, At cos(¢?t) +w At cos(¢?t)
X, +v,At cos(¢?t) — vtAt% sin(¢?t) —v,At cos(¢ft) +w, At cos(qat)
= X, —v,Atg, sin(¢,) + w,At cos(¢,)
Viet = Yiut = Via

IR
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Covariance Estimation

2

»

P

t+1/t

= E:)?HI)N(;;I]
= E[(FX, +Gw)(FX, +Gw,)']
= FE[X X' 1F" +GEww']G'

T T
-FP,F +GOG,

/it t

where

0, = Ewn']=|°

[t
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Some observations

* The larger the error, the smaller the effect on the final state
estimate

— If process uncertainty is larger, sensor updates will dominate state
estimate

— If sensor uncertainty is larger, process propagation will dominate state
estimate

* Improper estimates of the state and/or sensor covariance may
result in a rapidly diverging estimator

— As arule of thumb, the residuals must always be bounded within a +30
region of uncertainty

— This measures the “health” of the filter
* Many propagation cycles can happen between updates
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