
Today’s Agenda

• Spatial image filtering

•Linear filters

–Image Smoothing

–Image sharpening

•Nonlinear filter

• Fourier transform



Smoothing Spatial Filter – Low Pass Filters
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Normalization factor

• Noise deduction

• reduction of “irrelevant details”

• edge blurred

Weighted average



Smoothing Spatial Filter
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Smoothing Spatial Filter
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Comparison using Different Smoothing 

Filters – Different Kernels

Average Gaussian



Comparison using Different Smoothing 

Filters: Different Size

Filter size: 3, 5, 9, 15, 35

Square size: 3, 5, 9, 15, 25, 35, 45, 55 

with a spacing of 25

Letter size: 10, 12, 14, 16, 18, 20, 24

Bar: 5x100 with a spacing of 20



Image Smoothing and Thresholding

removed



Sharpening Spatial Filters

Sharpening – highlight the transitions in intensity by differentiation

           

             Smoothing – blur the transitions by summation

      

smooth sharpen

http://www.bythom.com/

sharpening.htm



Sharpening Spatial Filters

Sharpening – highlight the transitions in intensity 

by differentiation

• Electric printing

• Medical imaging

• Industrial inspection

Compared to smoothing – blur the transitions by 

summation



Perceived Intensity is Not a Simple Function 

of the Actual Intensity (1)

Enhance/amplify difference by 

image sharpening



Sharpening Spatial Filters

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝑐 ∗ 𝑒(𝑥, 𝑦)

Sharpened image

Original image

Magnifying factor Edge map

We will briefly introduce edge detection here and will have 

a more comprehensive discussion when we discuss 

image segmentation.



Spatial Filters for Edge Detection
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Nonzero at 

• onset of ramp and step

• along ramp or step

Nonzero at 

• onset of ramp and step

• end of ramp and step

Thick edge

Double edge



First-order VS Second-order Derivative for 

Edge Detection

• First-order derivative produces thick edge along 
the direction of transition

• Second-order derivative produces thinner edges



Gradient for Image Sharpening

∇𝑓 = grad(𝑓) =
𝑔𝑥

𝑔𝑦
=

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑔(∇𝑓)

= 𝑔𝑥
2 + 𝑔𝑦

2

𝑀(𝑥, 𝑦) ≈ |𝑔𝑥| + |𝑔𝑦|

Direction of change

Magnitude of change (gradient image)

http://en.wikipedia.org/wiki/Image_gradient



Gradient for Image Sharpening

Sum of the coefficients is 0 – 

the response of a constant 

region is 0

Edge detectors:

• Roberts cross – fast 

while sensitive to noise

• Sobel - smooth



Laplacian for Image Sharpening
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2D Isotropic filters – rotation invariant
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Image Sharpening

Scale the Laplacian by 

shifting the intensity 

range to [0, L-1]



Image Sharpening by Unsharp Masking and 

Highboost Filtering

1. Blur the original 

image

2. Subtract the blurred 

image from the 

original to get the 

mask

3. Add the mask to the 

original



Image Sharpening by Unsharp Masking and 

Highboost Filtering
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When 𝑘 > 1, it becomes a highboost filtering.

Example: when 𝑘 = 1

0 0 0
0 1 0
0 0 0

+
0 0 0
0 1 0
0 0 0
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−1 17 −1
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Sum of the coefficients is 1 



An Example

Original 

Blurred

Unsharp mask

Unsharp masking k=1

Highboost filitering k=4.5



Gradient for Image Sharpening -- Example

An application in industrial defect detection.

Original Sobel gradient



Combining Spatial Enhancement Methods



Combining Spatial Enhancement Methods



Order-Statistic (Nonlinear) Filtering

Order-statistic filtering – rank the pixel values in the filter window and 

assign the center pixel according to the property of the filter

• Median 

• Min/max



Reading Assignments

Chapter 3.8 on using fuzzy techniques for intensity 
transformation and spatial filtering

We are not going to cover it in the class 

Next class, we will start Chapter 4: Filtering in the Frequency 
Domain



Why We Need Fourier Transform

• Filtering in frequency domain

• Efficient computation for convolution

Image smoothing Image sharpeningEdge



Preliminary Concepts

Complex number 

Conjugate 

Polar coordinate representation

Euler’s formula  
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Concept of Fourier Series And Transforms

Fourier series: any periodic 

function can be represented by a 

discrete weighted sum of sines 

and cosines



Concept of Fourier Series And Transforms

Fourier series: any periodic function can be represented by a 

discrete weighted sum of sines and cosines

Fourier transform: an arbitrary function with finite duration 

(non-periodic function) can be expressed by a weighted 

integrals of sines and cosines

Fourier transform is more general!



Fourier Series

𝑓(𝑡) is a continuous function with period 𝑇, we have

Where

Video demo
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https://en.wikipedia.org/wiki/Fourier_transform#/me

dia/File:Fourier_transform_time_and_frequency_do

mains_(small).gif 

Coefficient 
Discrete frequency

cos
2𝜋𝑛

𝑇
𝑡 + 𝑗 sin

2𝜋𝑛

𝑇
𝑡

https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif
https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif
https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif


Fourier Transform in 1D 

𝒇(𝒕) is an arbitrary non-periodic function and 
can be represented by

where

Continuous frequencyCoefficient 
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Fourier Transform in 1D 

𝒇(𝒕) is an arbitrary non-periodic function and 
can be represented by

where
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Fourier series

Continuous frequency

Discrete frequency

Coefficient 
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Spatial domain → Frequency domain

Frequency domain → Spatial domain

Fourier Transform in 1D 
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Forward transform

Inverse transform

Fourier transform pair



Basic Properties of FT

Linearity

Translation

Translation in spatial domain → Rotation in frequency domain

Modulation

Rotation in spatial domain → Translation in frequency domain
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Basic Properties of FT

Scaling

Conjugation

Symmetry 
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FT of Simple Functions

𝑓 𝑡 = ቐ
𝐴 −

𝑤

2
≤ 𝑡 ≤

𝑤

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐹 𝜇 =
𝐴

𝜋𝜇
sin 𝜋𝑤𝜇 = 𝐴𝑤

sin 𝜋𝑤𝜇

𝜋𝑤𝜇
= 𝐴𝑤 𝑠𝑖𝑛𝑐(𝜋𝑤𝜇)



FT of a Rectangle Function

Rectangle function → Sinc function
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