Today’s Agenda

« Mathematical tools in digital image processing
* Intensity Transformation



Distance Measures

For pixels p, g, and z, with coordinates (x,y), (s,t) and (v,w), D
IS a distance function or metric if

(@) D(p.a)=20 D(p,q)=01if p=q
(0) D(p,q) =D(q, p), and
(¢) D(p,z) < D(p,q) + D(a,2)




Distance Measures

Euclidean distance D, (P, 0) :\/(X_5)2 +(y-t)°
City-block (D4) distance D, (P, Q) =/ X—s|+|y—t|
Chessboard (D8) distance (Chebyshev distance)

D, (p,q) = max(| x—s|,| y—t])



Distance: Sample Problem

D4 distance

6

D8 distance

5

Euclidean distance

v1+ 52

Distance vs length of a path?
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Mathematic Tools

Array/Matrix operations
Linear/nonlinear operations
Linearity: H[a,-f;(x. y) + a;fi(x, y)} = a;H{ﬁ(x. y)] + ajH[fj(x. y)}

Arithmetic Operations — single pixel operations
* Image averaging, image subtraction, image multiplication

Set and logic operations

Spatial operations
* Single pixel operations and neighborhood operations

Image transformation

Probabilistic methods



Mathematic Tools

Array versus Matrix operations

Array Multiplications

aiq a12].[b11 b12]_[a11b11 a12b12]
Az1 Qz21 [byy; by, az1by1 aj;b,;

Matrix Multiplications

aiq a12] o [bn b12] _ [a11b11 + ag2by1 ag1bqp + a12b22]
A1 QAz2 by1 by az1b11 + azpby1  az1bq2 + aza by,



Image Averaging - Noise Reduction

g(x.y) = f(x,y) + n(x.y)

g(x.y) = Egg(x y)
E{g(x.y)} = f(xe y)

abc

dillel it

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of
averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Assumption: the noise is uncorrelated in image and has zero mean



Image Subtraction — Enhance Difference

abec

FIGURE 2.27 (a) Infrared image of the Washington, D.C. area. (b) Image obtained by setting to zero the least
significant bit of every pixel in (a). (¢) Difference of the two images, scaled to the range [0, 255] for clarity.



Image Subtraction

ab
cd

FIGURE 2.28
Digital
subtraction
angiography.

(a) Mask image.
(b) A live image.
(c) Difference
between (a) and

- (b).(d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
The Image
Sciences Institute,
University
Medical Center,
Utrecht, The
Netherlands.)

The images used in averaging & subtraction must be
registered!



Image Multiplication (Division)

g(x.y)=t(x,y)h(x.y)

a b c
FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to

1 and black corresponds to 0). (¢) Product of (a) and (b).

e g(x,y)=Ff(x,y)/h(x,y)

FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified
approximately 130 times. (b) The shading pattern. (c) Product of (a) by the reciprocal of (b). (Original image
courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon. Eugene.)



Notes on Arithmetic Operations

The images used in averaging & subtraction must be
registered!

Output images should be normalized to the range of [0,255]

f = f —min(f)
f, = K[f,, /max(f,,)]



Set Operations Based on Intensities

Complement — negative image
A ={(x,y,K—2z)|(x,y,z) € A}
Thresholding

abc

FIGURE 2.32 Sct
operations
involving gray-
scale images.

(a) Original
image. (b) Image
negative obtained
using set
complementation.
(c¢) The union of
(a) and a constant
image.

(Original image
courtesy of G.E.
Medical Systems.)

AUB = {(x, y, max(z,, zb)) ‘(x, y,z,) €A, (x,y,2p) € B}



Logic Operations for Binary Image

NOT(A)

~ - Foreground/background
* Binary image: 0/1
* Fuzzy set: [0,1]

(A) AND (B)

Logic operations will be used a lot in
morphological image processing

FIGURE 2.33
IMustration of
logical operations
involving
foreground
(white) pixels.
Black represents
binary Os and
white binary 1s.
The dashed lines
are shown for
reference only.
They are not part
of the result.

(A) XOR (B)

XOR

=



Spatial Operations

Perform directly on the pixels of the given image
* Intensity transformation — change the intensity
* Single pixel operations s=T(z)
* Neighborhood operations

* Geometric spatial transformations — change the
coordinates



Single pixel operations

 Determined by
« Transformation function T
* Input intensity value
« Not depend on other pixels and position

s =T(z)
2‘ A

Lh
)]

FIGURE 2.34 Intensity
transformation
function used to
obtain the negative of
an 8-bit image. The
dashed arrows show
transformation of an
arbitrary input
intensity value z; into
its corresponding
output value s.

50

= 3
0 255




Neighborhood Operations

Image smoothing
g(x,y) =

Other examples:

Interpolation
*Image filtering

Image f

(xy)

T

°
)

The value of this pixel

is the average value of the

pixelsin S,

Image g

ab
@ |al

FIGURE 2.35
Local averaging
using
neighborhood
processing. The
procedure is
illustrated in

(a) and (b) for a
rectangular
neighborhood.
(c) The aortic
angiogram
discussed in
Section 1.3.2.

(d) The result of
using Eq. (2.6-21)
withm = n = 41.
The images are of
size 790 X 686
pixels.



Geometric Spatial Transformations — Rubber
Sheet Transformation

(X,y) =T{(v.w)}

Affine transform:

w|=T"Yy

TABLE 2.2

Affine transformations based on Eq. (2.6.-23).

Transformation Affine Matrix, T Coord |.nat.e Example
Name Equations
Identity 1 0 0 =
= y
01 0 ) w ’
0 0 1
X
Scaling ¢ 0 0 X =0
0 g 0 y = cw
0o 0 1
Rotation cosd sinf® 0O x=vcos# —awsinh
—sinf  cosf 0 y=wvcos# + wsin# ZE >
0 0 1
Translation 1 o o] x=v+1,
0O 1 0 y=w+ 1,
Lot 1
Shear (vertical) ri o o] x=v+sw
s, 1.0 y=w
0 0 1|
Shear (horizontal) 1 s, O] Y=
0 1 0 V =50+ w
00 1)




Geometric Spatial Transformations

.\_\l\ \\\\ -\.\.\.

Nearest neighbor Bilinear Bicubic

Note: a neighborhood operation, i.e., interpolation, is
required following geometric transformation



Image Registration

Compensate the geometric ° — d
Change INn: a _— ;L?g?tz.u
* view angle e imae. (o) T
« distance T Eépdndf“’)
- orientation Joenaaaaa,
* Sensor resolution (©) Registered
« object motion ot
Four major steps: coream
- Feature detection oo a f   P
* Feature matching T

* Resampling



Image Registration

Coordinates in the moving image (v, w) e mmB
Coordinates in the template image (x, y) a 759

X = C,V +C,W+CVW+C, TTTTA T

. .aaaaaaaa. .
Y = C.V + CaW+ C,VW+C,

 Known: coordinates of the points (x,y) and (v,w)
 Unknown: ¢4 to cg

4 tie points -> 8 equations



Vector and Matrix Operations

FIGURE 2.38
Formation of a

/ vector from
Zl corresponding
..... pixel values in
rch three RGB
Z — Z }:::- component
e images.
2 i
Z; ) &
\ &3 iyl
=2
Z Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)

D(z,a) =|z—a]| = /(z, ~a,)" + (2, —a,)* +... +(z, -, )’

Geometric transformations use vector and matrix
operations



Spatial-Frequency Domain Transformation

f(x, y)— Transform

e e el

I(u, v)

Operation
R

R[T(u,v)]

Inverse

— (X, y)

e el

transform

Spatial ———_———_ SDalia]

Transform domain

domain

Tv) =YY f(xy)

x=0 y=0
M-1N-1

F(xy)=> > T(u,v)s(X,y,u,v)

u=0 v=0

Forward
transformation
kernel

r(x,y,u,v)

Inverse
transformation
kernel

domain

FIGURE 2.39
General approach
for operating in
the linear
transform
domain.

u=01,..,M -1

v=01,.,N-1
X=01,..,M -1
y=01,.,N -1



Fourier Transforms and Filtering

ab
cd

FIGURE 2.40

(a) Image corrupted
by sinusoidal
interference. (b)
Magnitude of the
Fourier transform
showing the bursts
of energy responsible
for the interference.
(c) Mask used to
eliminate the energy
bursts. (d) Result of
computing the
inverse of the
modified Fourier
transform. (Original
image courtesy of
NASA.)



Fourier Transform

Separable kernel: r(x,y,u,v) =r(x,u)r,(y,v)
Symmtric kernel : r(x,y,u,v) =r(x,u)r,(y,v)

r(x y, U V) :e—j27z(uxll\/l+vy/N)

1 .
S(X, Y, U,V) = —— g M

MN



Probability Methods

z;, 1S the kth intensity value
ny IS the number of pixels having the intensity value z;

Probability of an intensity value

nk L-1 1
Z )=——", Z )=
P(z) =T kZ:;p( )



Probability Methods

L—

1 L-1
m = kz_; 2. p(z,), o°= kz_;(zk —m)?p(z,) What do they mean?

L-1
(2= Y (2, ~m)" p(z,) " moment of
k=1

- ‘ Y\' ' #
oy . N

Std=14.3 Std=31.6 Std=49.2

abc

FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and

(c) high contrast.




Stochastic Image-Sequence Processing

Using probability and random-process tools

Each pixel is arandom event - each image frame is a random
event, related to time

Probability plays a central role in modern image processing
and computer vision



Summary

In this course, we will discuss all the concepts in details.



Now,

Intensity Transformation and Spatial Filtering

Reading: Chapter 3.



Spatial Domain

Origin N

Y

Image f

3 X 3 neighborhood of (x, y)

Spatial domain

FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y)in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.

g(x.y)=T [f(x.y)]
-> spatial filter



1x1 Neighborhood - Intensity Transformation
- Image Enhancement

Contrast stretch s
FIGURE 3.2
Intensity )
s =T(r) s =T(r) m(f
“ A s
__________ e —— = e e e (b) T’Ilresho]ding
5{]. = T{r”) - A : . : function.
— | = |
_E.l | Eﬁ |
— T'(r) —~ : I'(r)— |
I I
I I
: | |
I I
=4 : | = |
= | | E |
- | | |
: | Ll | - F
k To k
Dark - Light Dark ~ Light _
Soft thresholding (logistic function) Hard thresholding (step function)
1
~S -

1+e”



Some Basic Intensity Transformation
Functions

 Thresholding — Logistic function
 Log transformation
 Power-law (Gamma correction)

* Piecewise-linear transformation

« Histogram processing



Some Basic Intensity Transformation
Functions

Image Negative: s=L-1-r

ab

FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq.(3.2-1).
(Courtesy of G.E.
Medical Systems.)



Basic Intensity Transformation Functions

L—-1

Negative

3L/A

Log

=
™~

Output intensity level, s

Po

7

nth root /

functiehs

nth power

Inverse log
—~

1
Identitv
/
' |

0
FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.

Lp 3L/4 L-1

Input intensity level, r

Log function:
s=clog(l+r) r=0

Stretch low intensity levels
Compress high intensity levels

Inverse log function:

s =clog™(r)

Stretch high intensity levels
Compress low intensity levels



Log Transformations:

s=c log(1+n)

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq.(3.2-2) with
c=1



Power-Law (Gamma) Transformations

L—1 //’l/Jf )
v, = 0.04
v =0.10
3L/A - y =020 -
“
E. v = 0.40
5
oy y = 0.67
o
1] _— -
g P Y=
E ¥y=15
E -
o y=23
LA y=5.0 n
y = 10.0
/ 2
0 L/4 L/2 3L/4

Input intensity level, r

FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
¥ (c = linall
cases). All curves
were scaled to fit
in the range
shown.

S=cCr’

» More versatile than log

transformation

» Performed by a lookup

table



Power-Law (Gamma) Transformations

Monitors have an intensity-
to-voltage response with a
power function

— ~1/2.5
S =T /
ab
cd
Original image | Gamma Original image as viewed FIGURE 3.7
correction annIynitoR (a) Intensity ramp

image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare
(d) and (a).

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor



Image Enhancement Using Gamma Correction




Power-Law (Gamma) Transformations for
Contrast Manipulation

ab

© |l

wuress  VWashed-out appearance caused
<o by a small gamma val
resonance

image (MRI) of a y a S a ga a Va ue
fractured human

spine.

(b)—(d) Results of

applying the

transformation in

Eq. (3.2-3) with

¢ =1and

y = 0.6,04,and

0.3, respectively.

(Original image

courtesy of Dr.

David R. Pickens,

Department of

Radiology and

Radiological

Sciences,

Vanderbilt

University

Medical Center.)




Power-Law (Gamma) Transformations for
Contrast Manipulation

ab
cd

FIGURE 3.9

(a) Aerial image.
(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with
¢=1land

y = 3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

Washed-out appearance
was reduced by a large
gamma value
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