Basic Concepts in Digital Image Processing

Image Processing \rightarrow Image Analysis

Object Detection / Recognition

Content-Based Image Retrieval

Biometrics

Super-Resolution

Applications of Digital Image Processing

Digital camera

Photoshop

Human computer interaction

Medical imaging for diagnosis and treatment

Surveillance

Automatic driving

. . .

Fast-growing market!

Now,

Introducing some basic concepts in digital image processing

- Human vision system
- Basics of image acquisition

Reading: Chapter 2.

Elements of Human Visual Perception

Human visual perception plays a key role in selecting a technique

Lens and Cornea: focusing on the objects

Two receptors in the retina:

- Cones and rods
- Cones located in fovea and are highly sensitive to color
- Rods give a general overall picture of view, are insensitive to color and are sensitive to low level of illumination

http://www.mydr.com.au/eye-health/eye-anatomy

Distribution of Rods and Cones in the Retina

Brightness Adaptation: Subjective Brightness

Brightness Discrimination

Brightness Discrimination at Different Intensity Levels

FIGURE 2.6 Typical Weber ratio as a function of intensity.

cone

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

Perceived Intensity is Not a Simple Function of the Actual Intensity – Simultaneous Contrast

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

More Optical Illusions

http://brainden.com/optical-illusions.htm

http://www.123opticalillusions.com/

Object Perception

- How do we perceive separate features, objects, scenes, etc. in the environment?
 - Perception of a scene involves multiple levels of perceptual analysis.

Groups of

Features

What Do We Do With All Of This Visual Information??

"Bottom up processing"

- Data-driven
- Sensation reaches brain, and then brain makes sense of it

"Top down processing"

- Cognitive functions informs our sensation
- E.g., walking to refrigerator in middle of night

Now,

Introducing some basic concepts in digital image processing

- Human vision system. Why we need to study human eye?
- Basics of image acquisition
 - Geometry size, location, ...
 - Appearance color, intensity

Image Formation in the Eye

Image is upside down in the retina/imaging plane!

FIGURE 2.3

Graphical representation of the eye looking at a palm tree. Point C is the optical center of the lens.

Adjust focus length

- Camera
- Human eye

Lens Parameters

Depth of Field & Out of Focus

http://www.azuswebworks.com/photography/dof.html

- DOF is inversely proportional to the focus length
- DOF is proportional to S1

Light and EM Spectrum

http://www.kollewin.com/blog/electromagnetic-spectrum/

Relation Among Wavelength, Frequency and Energy

wavelength (λ) , frequency (v), and energy (E)

$$\lambda = \frac{c}{v}$$
, $c = 2.998 \times 10^8$ m/s is the speed of light

E = hv, h is the Planck's constant, 6.626068×10⁻³⁴ m² kg / s

Light and EM Spectrum

What size of the object you can "see"? Diffraction-limit.

Airy disk: the size is proportional to wavelength and f-number (focal length/lens dimension)

 $\sim \lambda \frac{J}{d}$

http://en.wikipedia.org/wiki/Airy_disc

Image Sensing and Acquisition

Illumination energy → digital images

Incoming energy is transformed into a voltage

Digitizing the response

A (2D) Image

An image = a 2D function f(x, y) where

- x and y are spatial coordinates
- *f*(*x*,*y*) is the intensity or gray level

An digital image:

- x, y, and f(x,y) are all finite
- For example $x \in \{1, 2, ..., M\}$, $y \in \{1, 2, ..., N\}$

$$f(x, y) \in \{0, 1, 2, \dots, 255\}$$

Digital image processing \rightarrow processing digital images by means of a digital computer

Each element (*x*, *y*) in a digital image is called a pixel (picture element)

0

X

A Simple Image Formation Model

 $f(x, y) = i(x, y) \cdot r(x, y)$ $0 < f(x, y) < \infty: \text{ Image (positive and finite)}$ Source: $0 < i(x, y) < \infty:$ Illumination component Object: 0 < r(x, y) < 1: Reflectance/transmission component

> $L_{\min} < f(x,y) < L_{\max}$ in practice where $L_{\min} = i_{\min}r_{\min}$ and $L_{\max} = i_{\max}r_{\max}$

i(x,y):

Sunlight: 10,000 lm/m² (cloudy), 90,000lm/m² clear day Office: 1000 lm/m²

r(x,y): Black velvet 0.01; white pall 0.8; 0.93 snow

Image Sampling and Quantization

Sampling: Digitizing the coordinate values (usually determined by sensors)

Quantization: Digitizing the amplitude values

Image Sampling and Quantization in a Sensor Array

CCD array

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

Dynamic Range

Dynamic range/contrast ratio:

the ratio of the maximum detectable intensity level (saturation) to the minimum detectable intensity level (noise)

$$\frac{I_{max}}{I_{min}}$$

Representing Digital Images

- (a): f(x,y), x=0, 1, ..., M-1, y=0,1, ..., N-1
- x, y: spatial coordinates \rightarrow spatial domain
- (b): suitable for visualization
- (c): processing and algorithm development
- x: extend downward (rows)
- y: extend to the right (columns)

Number of bits storing the image

 $\stackrel{\wedge}{b} = M \times N \times k$

b c FIGURE 2.18 (a) Image plotted as a surface. (b) Image displayed as a visual intensity array. (c) Image shown as a 2-D numerical array (0, .5, and 1 represent black, gray, and white, respectively).

f(x, y)

	Dri	giı	n													
₹0	0	0	0	0	0	0	•	•		0	0	0	0	0	0	0
0	0	0	0	0	0						0	0	0	0	0	0
0	0	0	0	0								0	0	0	0	0
0	0	0	0		:								0	0	0	0
0	0	0	•	٠	.5	.5	.5	5	•	•				0	0	0
0	0	0			.5	.5								0	0	0
					.5		•	•								
•									1	1	1	• •				•
•									1	1						•
0	0	0							1		۰.			0	0	0
0	0	0							:					0	0	0
0	0	0	0										0	0	0	0
0	0	0	0	0								0	0	0	0	0
0	0	0	0	0	0						0	0	0	0	0	0
0	0	0	0	0	0	0	•	•	•	0	0	0	0	0	0	0

Store an Image

TABLE 2.1

Number of storage bits for various values of N and k.

N/k	1(L = 2)	2(L = 4)	3(L = 8)	4(L = 16)	5(L = 32)	6(L = 64)	7 (L = 128)	8 (L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Spatial Resolution

Spatial resolution: smallest discernible details

- # of line pairs per unit distance
- # of dots (pixels) per unit distance
 - Printing and publishing
 - In US, dots per inch (dpi)

Newspaper \rightarrow magazines \rightarrow book

Large image size itself does not mean high spatial resolution!

Scene/object size in the image

1280*960

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

http://www.shimanodealer.com/fishing_reports.htm

Intensity Resolution

Intensity resolution

- Smallest discernible change in intensity levels
- Using the number of levels of intensities
- False contouring (banding) when k is small undersampling

8

16

2

Isopreference Curves

a b c

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

Vary the spatial and intensity sampling simultaneously:

Basic Set and Logical Operations

- A is a set: A={.} e.g. A={1,...,255} or $A = \{w | w = 1, ..., 255\}$ $A = \emptyset$ for empty set
- a is an element of $A(a \in A)$ or a isn't an element of $A(a \notin A)$
- A is a *subset* of B if every element in A also is in B $(A \sqsubseteq B)$
- C is the union of two sets A and B $(C = A \cup B)$
- C is the *intersection* of A and B $(C = A \cap B)$
- Disjoint or mutual exclusive sets $(A \cap B = \emptyset)$
- Set universe is the set of all elements in an application
- Set difference $(A B = \{w | w \in A, w \notin B\})$

Set Operations Based on Coordinates

A region in an image is represented by a set of coordinates within the region

Some Basic Relationships between Pixels

Adjacency

Adjacency is the relationship between two pixels *p* and *q V* is a set of intensity values used to define adjacency

- Binary image: V={1} or V={0}
- Gray level image: $V \sqsubseteq \{0, 1, ..., 255\}$ $f(p) \in V$ and $f(q) \in V \Longrightarrow$ Intensity constraints

Three types of adjacency:4-adjacency8-adjacencym-adjacency $p \xrightarrow{0}{1} 1$ 0101 $p \xrightarrow{0}{1} 0$ 01101 $p \xrightarrow{0}{1} 0$ 01101 $q \in N_4(p)$ $q \in N_8(p)$ $q \in N_D(p)$ and $N_4(q) \cap N_4(p) = \emptyset$