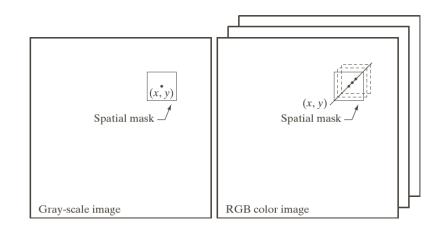

Today's Agenda

- Color image processing
- Review for Midterm

Intensity to Color Transformation



Full-color Image Processing

Pixel in color image
$$\mathbf{p}(x, y) = \begin{bmatrix} p_r(x, y) \\ p_g(x, y) \\ p_b(x, y) \end{bmatrix}$$

- Process each component/channel individually, then generate the composite image
- Work on each pixel individually

Color Transformation

For a color image with n components

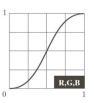

input values for all components

$$S_i = T_i(r_1, r_2, \dots, r_n), \quad i = 1, 2, \dots, n$$

Output value for ith component Transformation functions

- Modify intensity
- Color complement ("negative" color image)
- Color slicing
- Tonal correction
- Color balancing
- Histogram processing

Examples of Color Image Transformation


Original imageIntensity
modificationComplement
colorColor slicing
RGBHSIRGBRGB

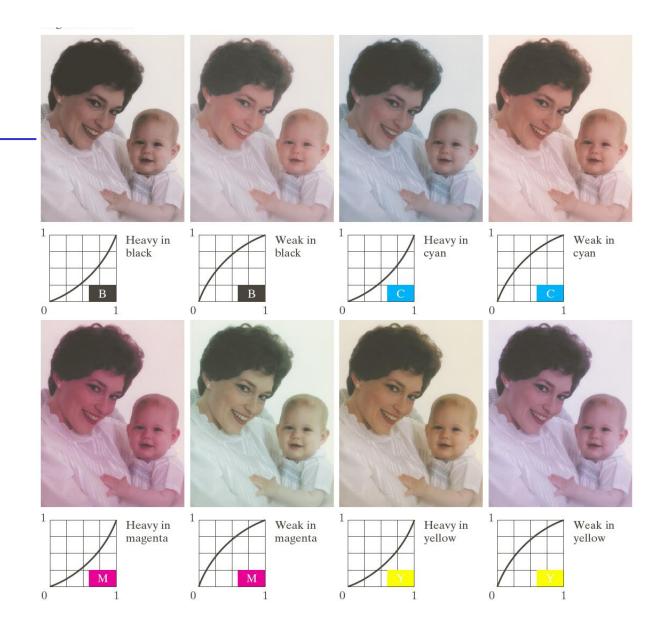
Tonal Correction

- Correct the tonal range (distribution of color intensities)
- Recall the intensity transformation in the gray level images
- For RGB model, each component has the same transformation function
- For HSI model, the transformation is applied on the intensity component only

Corrected

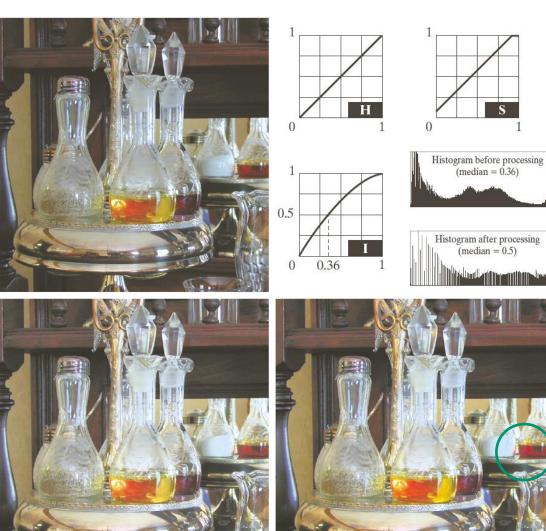
R.G.B

FIGURE 6.35 Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red, green, and blue components equally does not always alter the image hues significantly.


Dark

Color Balancing

Correct color unbalance by analyzing a known color in image


Original/Corrected

Histogram Processing

Step 1: Histogram equalization

Step 2: Saturation adjustment

a b c d

FIGURE 6.37 Histogram equalization (followed by saturation adjustment) in the HSI color space.

Reading Assignment

- Reading Chapter 6.6, 6.7, 6.8
- Read Chapter 7 (Wavelets and Multiresolution Processing)

Review of Chapter 2- Chapter 5

Chapter 2

- Human vision system
- Basics of image processing

Chapter 3

- Intensity transformation
- Spatial filtering

Chapter 4

- Fourier transform
- Image convolution in frequency domain

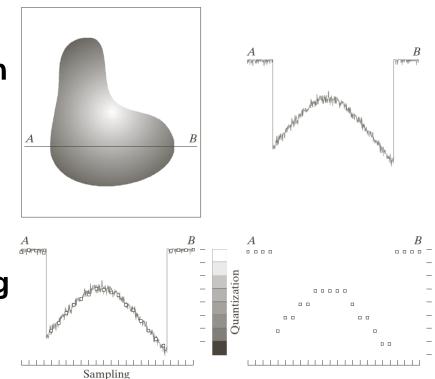
Chapter 5

- Image denoise
- Image degradation
- Image restoration

Chapter 6

- Fundamentals of color image processing
- Color transformation

Human Vision System Glare limit-15 m Subjective brightness Adaptation range B_a -17 mm**→** 100 m B_b Geometrical relationship between the real object and the image of the Scotopic object Photopic Scotopic threshold • The minimum size of the object -2-62 4 -40 you can "see" Log of intensity (mL) **Brightness** adaption


Basics of Image Processing

 $f(x, y) = i(x, y) \cdot r(x, y)$

- Image sampling and quantization
 Spatial/intensity resolution
 - opalial/intensity resolution
- Dynamic range of the image

 $I_{\rm max}$ / $I_{\rm min}$

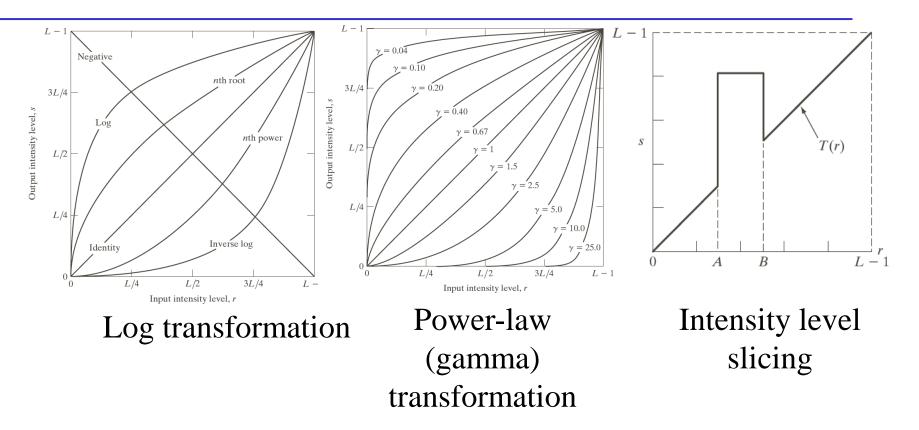
- Image representation and storing
- Image interpolation
 - Nearest neighbor and bilinear
- Set operations

Basics of Image Processing (Cont.)

Basic relationships between pixels

- Adjacency
- Connectivity
- Path

Basic relationships between regions


- Adjacency
- boundary

Distance measurement

Mathematical tools

- Difference between matrix and array operation
- Linear/nonlinear operation
- Applications of image averaging, subtraction, and multiplication

Intensity Transformation

Applications and working conditions using these transformations

Histogram Processing

What is a histogram of an image?

Histogram equalization

Histogram matching

Spatial Filtering

Image convolution in spatial domain and has properties of

• Commutativity, Associativity, distributivity

Image correlation in spatial domain

Spatial filters

- Smoothing filter
 - -Average filter
- Sharpening filter
 - -Laplacian filter
 - Unsharp masking
 - -Sobel operator
- Order-statistic filter
 - -Median filter
 - -Min/max filter

Fourier Transform

Fourier series

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{j2\pi nt}{T}}$$

Unit impulse and its sifting property

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$$

Fourier transform

$$F(\mu) = \int_{-\infty}^{\infty} f(t) e^{-j2\pi\mu t} dt \quad \longleftrightarrow \quad f(t) = \int_{-\infty}^{\infty} F(\mu) e^{j2\pi\mu t} d\mu$$

Image convolution in frequency domain

Basic Properties of FT

Linearity $h(t) = af(t) + bg(t) \leftrightarrow H(u) = aF(u) + bG(u)$

Translation
$$h(t) = f(t - t_0) \leftrightarrow H(u) = e^{-j2\pi t_0 u} F(u)$$

Modulation
$$h(t) = e^{j2\pi u_0 t} f(t) \leftrightarrow H(u) = F(u - u_0)$$

Scaling $h(t) = f(at) \leftrightarrow H(u) = \frac{1}{|a|} F(\frac{u}{a})$

Conjugation $h(t) = f^{*}(t) \leftrightarrow H(u) = F^{*}(-u)$

 $f(t) \leftrightarrow F(\mu) \Rightarrow F(t) \leftrightarrow f(-u)$

Symmetry

Image Degradation

$$g(x, y) = h(x, y) \otimes f(x, y) + \eta(x, y)$$
$$G(u, v) = H(u, v)F(u, v) + N(u, v)$$

Important noise models

- Gaussian noise model
- Impulse noise model

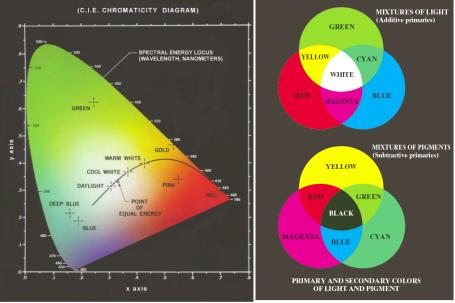
Image denoise

- Various mean filters and their applications
- Order-statistic filters and their applications

Image restoration

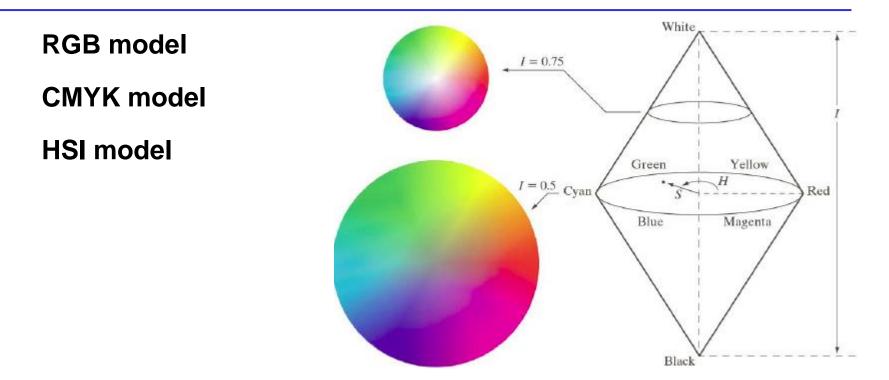
• Inverse filtering, Wiener filtering, and Constrained Least Square filtering

-Working conditions


Fundamentals of color image processing

Primary/secondary colors

Primary/secondary pigments


Chromaticity: hue and saturation

Color gamut: any color on a line segment can be generated by two ending points; the same color can be generated by different combinations

What's the difference between them?

Fundamentals of color image processing (Cont'd)

Requirement: how to represent a color in a specific model?

Color Transformation

For a color image with n components input values for all components $s_i = T_i(r_1, r_2, \dots, r_n), \quad i = 1, 2, \dots, n$ Output value for ith component Transformation functions

Intensity modificationHSI modelColor complementRGB modelTonal correctionHSI modelColor balancingThe choice of color model varies for a specific imageHistogram processingHSI model

Which model is the most effective to perform a specific transformation?