Today's Agenda

Color image processing

Color Representations

PRIMARY AND SECONDARY COLORS

OF LIGHT AND PIGMENT

Co., Lamp

Business Division.)

- primary/secondary colors
- primary/secondary pigments
- all visible colors

Characteristics of Color Light

- Radiance
- Luminance
- Brightness
- Chromaticity
 - Hue dominant color/wavelength
 - Saturation color purity

White and grey has the same chromaticity, while different brightness

Chromaticity

Tristimulus values of a color: The amounts of the three primary color to match a test color

CIE (International Commission on Illumination) RGB matching function

$$R = \int_{0}^{\infty} I(\lambda)\overline{r}(\lambda)d\lambda \qquad G = \int_{0}^{\infty} I(\lambda)\overline{g}(\lambda)d\lambda \qquad B = \int_{0}^{\infty} I(\lambda)\overline{b}(\lambda)d\lambda$$
$$\int_{0}^{\infty} \overline{r}(\lambda)d\lambda = \int_{0}^{\infty} \overline{g}(\lambda)d\lambda = \int_{0}^{\infty} \overline{b}(\lambda)d\lambda$$

Chromaticity

Tristimulus values of XYZ space

Chromaticity Diagram

x and y to represent colors

Chromaticity Diagram (Cont'd)

- **Color mixing:** any color on a line segment can be generated by the two ending points in the color diagram
- Metamerism: the same color can be generated with different combinations of source colors with the same tristimulus values

Color Gamut

- Color gamut: a complete subset of colors can be displayed on a device or represented by a color space.
- The color represented by 3 given colors resides in the triangle formed by the 3 points
- Not all colors can be represented by 3 primary colors

Color Models

- **Color model (space/system):** a coordinate system or a subspace to represent the colors
- RGB model: monitors and cameras
- CMY (Cyan, magenta, and yellow): printing
- HSI (Hue, saturation, and intensity): separate color and gray level information

RGB Model

3D Cartesian coordinate system

All colors are normalized to [0, 1]

Pixel depth: number of bits to represent each pixel in the RGB space

RGB Model (Cont'd)

CMY/CMYK Model

CMY (Cyan, Magenta, Yellow)

• Represent the light reflected from the surface.

A better model to describe colors.

- Hue: the dominant color observed
- Saturation: the purity of the color (how much the color is polluted by white color)
- Value/Intensity: intensity level

A better model to describe colors.

- Hue: the dominant color observed
- Saturation: the purity of the color (how much the color is polluted by white color)
- Value/Intensity: intensity level

HSI to RGB

Assume RGB values have been normalized to [0,1]

$$H = \begin{cases} \theta/360 & \text{if } B \le G \\ 1 - \theta/360 & \text{if } B > G \end{cases} \quad \text{where} \quad \theta = \cos^{-1} \begin{cases} \frac{0.5[(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B)]^{1/2}} \end{cases}$$
$$S = 1 - \frac{3}{R + G + B} \min(R, G, B) \qquad I = \frac{R + G + B}{3}$$

HSI values are in [0,1]

Case Study for RGB-HSI

GB sector(
$$120 \le H < 240$$
): $H = H - 120$
 $R = I(1-S)$ $G = I\left[1 + \frac{S\cos H}{\cos(60-H)}\right]$ $B = 3I - (R+G)$

BR sector(
$$240 \le H \le 360$$
): $H = H - 240$
 $G = I(1-S)$ $B = I\left[1 + \frac{S\cos H}{\cos(60-H)}\right]$ $R = 3I - (G+B)$

Manipulate

Hue Saturation

Intensity

Full Color Image in Different Color Space

Full color

MIXTURES OF PICMENTS (Subtractive primaries) VELLOW RED REACK MAGENTA RULE CYAN PRIMARY AND SECONDARY COLORS OF LIGHT AND PIGMENT

Hue

Magenta

Green

Saturation

Yellow

Black

Blue

Intensity

Pseudo Color Image Processing

Pseudo color/false color: assign colors to gray values Enhance the visualization quality of the image

- Segmentation results
- Enhance the intensity difference

Intensity Slicing

Examples of Intensity Slicing

a b

FIGURE 6.20 (a) Monochrome image of the Picker Thyroid Phantom. (b) Result of density slicing into eight colors. (Courtesy of Dr. J. L. Blankenship, Instrumentation and Controls Division, Oak Ridge National Laboratory.)

a b

FIGURE 6.21 (a) Monochrome X-ray image of a weld. (b) Result of color coding. (Original image courtesy of X-TEK Systems, Ltd.)

Examples of Intensity Slicing

FIGURE 6.22 (a) Gray-scale image in which intensity (in the lighter horizontal band shown) corresponds to average monthly rainfall. (b) Colors assigned to intensity values. (c) Color-coded image. (d) Zoom of the South American region. (Courtesy of NASA.)

Intensity to Color Transformation

Example

Full-color Image Processing

Pixel in color image
$$\mathbf{p}(x, y) = \begin{bmatrix} p_r(x, y) \\ p_g(x, y) \\ p_b(x, y) \end{bmatrix}$$

- Process each component/channel individually, then generate the composite image
- Work on each pixel individually

Color Transformation

For a color image with n components

input values for all components

$$S_i = T_i(r_1, r_2, \dots, r_n), \quad i = 1, 2, \dots, n$$

Output value for ith component Transformation functions

- Modify intensity
- Color complement ("negative" color image)
- Color slicing
- Tonal correction
- Color balancing
- Histogram processing

Examples of Color Image Transformation

Original imageIntensity
modificationComplement
colorColor slicing
RGBHSIRGBRGB

Tonal Correction

- Correct the tonal range (distribution of color intensities)
- Recall the intensity transformation in the gray level images
- For RGB model, each component has the same transformation function
- For HSI model, the transformation is applied on the intensity component only

Corrected

R.G.B

FIGURE 6.35 Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red, green, and blue components equally does not always alter the image hues significantly.

Dark

Color Balancing

Correct color unbalance by analyzing a known color in image

Original/Corrected

Histogram Processing

Step 1: Histogram equalization

Step 2: Saturation adjustment

a b c d FIGUR

FIGURE 6.37 Histogram equalization (followed by saturation adjustment) in the HSI color space.

Reading Assignment

- Reading Chapter 6.6, 6.7, 6.8
- Read Chapter 7 (Wavelets and Multiresolution Processing)