Today’s Agenda

e 2D Fourier Transform

* Filtering in Frequency domain



DFT of this Function:
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FIGURE 4.11

(a) A function,
and (b) samples in
the x-domain. In
(a),tis a
continuous
variable;in (b), x
represents integer
values.



FT, FS, DTFT, DFT
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DFT
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Frequency

https://en.wikipedia.org/wiki/Discrete Fourier transform#/media/File:From Continuous To Discrete Fo

urier Transform.qif



https://en.wikipedia.org/wiki/Discrete_Fourier_transform#/media/File:From_Continuous_To_Discrete_Fourier_Transform.gif
https://en.wikipedia.org/wiki/Discrete_Fourier_transform#/media/File:From_Continuous_To_Discrete_Fourier_Transform.gif

Extension to 2D Fourier Transform

F(u,v) =f f f(t,z)e 12T BtIV2) ded 7

f(t,2) = f f F (i, v)e 2T We+va) gy



2D Step Function and FT

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the f-axis, so the spectrum is more “contracted” along the p-axis.
Compare with Fig. 4.4.
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Extension to 2D Fourier Transform

8(x — xo, ¥ = yo) FIGURE 4.12
4 Two-dimensional
unit discrete
impulse. Variables
x and y are
le discrete, and 6 is
| zero everywhere
| except at
: coordinates
|

(X0, Yo)-




2D Sampling

Ky (.T - :I FIGURE 4.14
a':'n T.“."LE 3 A Two-dimensional
A impulse train.
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Aliasing in 2D
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Footprint of an

ideal lowpass
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FIGURE 4.15

Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

(b) under-sampled
band-limited
function.



Aliasing Examples
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FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c¢) and (d), the
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.



Aliasing Example

able

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a 3 X 3 averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)



Aliasing Example
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FIGURE 4.18 Illustration of jaggies. (a) A 1024 X 1024 digital image of a computer-generated scene with
negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation.
(c) Result of blurring the image in (a) with a 5 X 5 averaging filter prior to resizing it to 25% using bilinear
interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)



2D Discrete Fourier Transform

M-1N-1 N
F(u,v) = fx,y)e 2"ty
x=0 y=0
, M—-1N-1 wx vy
) =3 ) ) F e Grw
MN x=0 y=0
u,x=01,--,M
v,y=01-,N

F(u,v)=F@Uu+kM,v+k,N)
f(x,y)=f(X+kM,y+k,N)

Periodicity:



Fourier Spectrum and Phase Angle
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FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners.



Centering the DFT

Modulation/Translation:
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FIGURE 4.23
Centering the
Fourier transform.

'(a) A 1-D DFT

showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying f(x)
by (—1)* before
computing F(u).
(c) A2-D DFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)*"

before computing
F(u,v). The data
now contains one
complete, centered
period, as in (b).



Fourier Spectrum and Phase Angle
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FIGURE 4.24
(a) Image.
(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The

{

| zero crossings of the
: spectrum are closer in

=gy —» p  the vertical direction
because the rectangle
in (a) is longer in that
direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.
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Fourier Spectrum After Translation and Rotation
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FIGURE 4.25

(a) The rectangle
in Fig.4.24(a)
translated,

and (b) the
corresponding
spectrum.

(c¢) Rotated
rectangle,

and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).



The Roles of Fourier Spectrum and Phase
Angle
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FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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2D Convolution Theorem (Zero Padding)
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2D DFT Properties

(IDFT) of Flu. v)
3) Polar representation

4) Spectrum

5) Phase angle

6) Power spectrum

7) Average value

Name Expression(s)
1) Discrete Fourier M—1N—1
transform (DFT) Fluv) = D, > f(x, y)e /FrusMrvyN)
of f(x,y) x=0 y=0
2) Inverse discrete | M=1N-]
Fourier transform flx.y) = F(u. v)el2mux/M+uy/N)
fey) =35 2 2 Fu.v)

=t v=i

Flu,v) = |F(u,v)|e®v)

1/2

|F (u,v)| = [RE{:L v) + I3 1:)]
R = Real(F). I = Imag(F)

Iu, v
hlu, v) = l::ln_l[ ( }}
R(u. v)

P(u.v) = |F(u, v)|?

l M-1N-1

flx.y) =

l
T 5 ! = _F {.-, {}
mégm”ﬂm{}

(Continued)

TABLE 4.2
Summary of DFT
definitions and
corresponding
expressions.



2D DFT Properties (cont.)

Name

Expression(s)

8) Periodicity (ky and
k> are integers)

9) Convolution

10) Correlation

11) Separability

12) Obtaining the inverse
Fourier transform
using a forward

transform algorithm.

Flu,v) = Flu + kkM.v) = Flu.v + k;,N)
= F{H + klM.. v+ ng}

flx.y) = flx + kM. y) = f(x.y + k;N)

= f(x + kiM.y + kN
M-1N-1

flx.v)*xh(x, y) = E Ef(??’hﬂ}h{l’ —m,y — n)

m=U n=0

M—1N-1
fley)eh(x.y) = 2 2 f(m.n)h(x + m.y + n)
m=0 n=0
The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.
. M-1IN-1 o .
MNf'(x.y) = 2 D F (u.v)e 27e/MuN)

: . =0 v=0 : : " :
Thisequation indicates that inputting F (u., #) into an

algorithm that computes the forward transform
(right side of above equation) yields MNF (x, y).
Taking the complex conjugate and dividing by MN
oives the desired inverse. See Section 4.11.2.

TABLE 4.2
(Continued)



2D DFT Properties (Symmetry)

Spatial Domain'

Frequency Domain'

1)

b 2

)
)
)

=

N

~1 o

oo

-~

10
1
2
13

—_

)
)
)
)
9)
)
)
)
)

f(x,y)real

f(x,y) imaginary
f(x,y)real

f(x,y) imaginary
f(—x, —y) real
f(—x, —y) complex

f(x, y) complex

f(x,y) real and even

f(x, y)real and odd

f(x,y)imaginary and even
f(x, y)imaginary and odd
f(x,y) complex and even

f(x,y)complex and odd

A 1

—

F'(u,v) = F(—u, —v)

F'(-

u, —v) = —F(u,v)

R(u,v) even; I(u, v) odd
R(u, v) odd; I(u, v) even

F(u,v) complex

F(—u, —v) complex

F(-
F(u,
F(u,
F(u,
F(u,
F(u,
F(u,

u — v) complex

v) real and even

v) imaginary and odd

v) imaginary and even

v) real and odd

v) complex and even

v) complex and odd

"Recall that x. y, «. and v are discrete (integer) variables, with x and u in the range [0, M — 1], and y, and
vin the range [0. N — 1]. To say that a complex function is even means that its real and imaginary parts

are even, and similarly for an odd complex function.

Even (symmetric):

We (X, y)
Odd (antisymmetric): W, (x,y)

We(M_X,N_y)
=—-w,(M —x,N —y)

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and /(u,v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.



2D DFT Properties (cont.)

Name

DFT Pairs

1) Symmeltry
properties

2) Linearity

3) Translation
(general)

4) Translation
to center of

rectangle,
(M/2.N/2)

5) Rotation

6) Convolution
theorem’

the frequency

See Table 4.1

afi(x,y) + bfs(x, v) < aF(u. v) + bF(u.v)

fix. _‘y‘}E:'izﬁl;uﬂxl,{u+11.;-}?;'1"*'} = Flu — upy. v — vp)

Flx = xp.y = yo) = F(u. v)e 7rwoMroi)

fle.y)(—=1)""V= F(u — M/2.v — N/2)
f(x — Mj2.y — N/2) = Fu.v)(—1)**"

flr.0 + 8)) = Flo.¢ + 6;)

X =rcost y=rsinfl u=wcosg

flx.y)*kh(x,y) = Flu, v)H(u, v)
f(x.y)h(x, y) = F(u,v)* H(u,v)

v = wsIiNg

|
TABLE 4.3

Summary of DFT
pairs. The closed-
form expressions
in 12 and 13 are
valid only for
continuous
variables. They
can be used with
discrete variables
by sampling the
closed-form.
continuous
eXpPressions.

(Continued)



2D DFT Properties (cont.)

Name DFT Pairs

7) Correlation f(x,y)¥ch(x, y) < F'(u.v) H(u. v)
_— theorem' f{x. vihix,y)e= F(u.v)¥ H(u. v)

8) Discrete unit dlx.y)e= 1

impulse
sin(mua) sin(wvb) .
9) Rectangle rect|a. b| < ab ( ) sin( ) —jm(ua+b)
= (mua)  (wovb)
10) Sine sin(2mugx + 27ogy) <
1
j;[ﬁ(u + Mug, v+ Nuyy) — 6(u— Mug., v — Nz:“}]
11) Cosine cos(2mupx + 2myy) =

1
;[ﬁ{u + Muy. v + Nvy) + 6(u — Mug, v — Ni‘,‘“}]

"" m ".I n
2) Differentiation (;—r) (:4) flt.z2) = (2ap)"(2av)" Fu. v)
(The expressions
on the right "f(t. z) (. 2)
assume that ar™ az"
f(+oo, £o0) = ().)

13) Gaussian A27rale D) o Ao (7 (4 s a constant)

The following Fourier transform pairs are derivable only for continuous variables,
denoted as before by t and z for spatial variables and by p and » for frequency
variables, These results can l"u., used for DFT work by sampling the continuous forms.

< (2mp)"F(p, v)i———— < (j2av)' F(p. v)

" Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-

ciative, commutative, and distributive.

TABLE 4.3
(Continued)



Basics of Filtering in Frequency Domain

vk
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FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)



Frequency Domain Filtering Fundamentals

FIGURE 4.30
Result of filtering
the image in
Fig.4.29(a) by
setting to O the
term F(M/2,N/2)
in the Fourier
transform.

gx,y) © Hu,v)F(u,v)

Centered F(M/2,N/2) = MNf(x,y)—" de term



Low-Pass and High-Pass Filters

H(u,v)

f

A0
0
f
i
,'%/I"O‘O\\“\\',
i

(}
o

XN
A

% ,,v,"lll‘;:‘
i

W
i :‘&‘\’0’!

i
il

allblic
de f

FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using
Eq.(4.7-1).We used a = 0.85 in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig.4.29(a).



Effects of Zero-Padding

No padding

Smoothing, no padding  Smoothing, padded

H

Padded
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Spatial Zero-Padding for the Filter
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FIGURE 4.34

(a) Original filter
specified in the
(centered)
frequency domain.
(b) Spatial
representation
obtained by
computing the
IDFT of (a).

(c) Result of
padding (b) to twice
its length (note the
discontinuities).
(d) Corresponding
filter in the
frequency domain
obtained by
computing the DFT
of (c). Note the
ringing caused by
the discontinuities
in (c). (The curves
appear continuous
because the points
were joined to
simplify visual
analysis.)



Summary: Filtering in the Frequency Domain

For f(x,y), find P =2M, Q = 2N

. Form a padded image f,(x,y)

1.
2
3. Centering: Multiply f,(x,y) by (=1)*"Y
4, Compute DFT F(u,v)

5

. Generate a real symmetric filter H(u,v) of asize P X Q,
centered at (P/2,Q/2) and make G(u,v) = H(u,v)F(u,v)

6. Obtain the processed image (should be real in theory)

9, () = freallg (e, y) -1

7. Obtained the final processed results g(x,y) from the top left
M x N region



An Example

T T

c
f

f—

a
d
g h
FIGURE 4.36

(a) An M X N
image, f.

(b) Padded image,
fpofsize P X Q.
(c) Result of
multiplying f, by
(_ | )x+y.

(d) Spectrum of
F,. (e) Centered
Gaussian lowpass
filter, H, of size

P X Q.

(f) Spectrum of
the product HF,.
(g) 8. the product
of (—1)*"Y and
the real part of
the IDFT of HF,.
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of g,



Correspondence to the Spatial Domain Filter

H(u)

A

H(u)
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FIGURE 4.37

(a) A 1-D Gaussian
lowpass filter in the
frequency domain.
(b) Spatial

lowpass filter
corresponding to
(a). (c) Gaussian
highpass filter in
the frequency
domain. (d) Spatial
highpass filter
corresponding to
(c). The small 2-D
masks shown are
spatial filters we
used in Chapter 3.

The FT of a Gaussian function is still a Gaussian function



An Example (Sobel Mask)

10 |1 ab

cd
2| 0 2

FIGURE 4.39
=1 8] (a) A spatial

mask and
perspective plot

II 'o“

A N, of its
-/”"/”wa'%" AR “'.‘;.o’:"' correspondin
=5 ////l/ﬂ)///l”%%"é“““\“\‘“ "“Q ¢ p g .
i L frequency domain

filter. (b) Filter
shown as an
image. (c) Result
of filtering
Fig.4.38(a) in the
frequency domain
with the filter in
(b). (d) Result of
filtering the same
‘ image with the

| {' | {' spatial filter in
’ | | (a). The results
Al | i are identical.




Image Smoothing Using Frequency Domain
Filters - Ideal Lowpass Filter

H(u, v) H(u, »)
— \

= D(u, v)

abe

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Hilter radial cross section.



Locating the Cut-Off Frequency

aaaaaaaa
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FIGURE 4.41 (a) Test pattern of size 688 X 688 pixels, and (b) its Fourier spectrum. The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.




Applying the ILPF - Blurring and Ringing

P m
.xnmHE N -
coe a o .
Original ILPF, cutoff 10,
(TR o,
aaaaaaaa L J
i 228 ) =X 8 B
1) o | .
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’ | E AU
Energy 93.1% TETETY ¥ ll!l.!'l“: aad ey e
--amlEH -«nmE N
ILPF, cutoff 160 L a i a ILPF, cutoff 460

I o NI S Energy 99.2%
aaaaaaaa aaaaaaaa

Energy 97.8%



Why?
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FIGURE 4.43

(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size

1000 X 1000.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.




Butterworth Lowpass Filters (BLPF)

H (u, v) H(u, v)
1 —v 19}
AN
.IJII 0‘5
g
=D(u, v)
abc

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4. 1

H(u,v) =

1+[D(u,v)/ D ]*"  order

D, is the cutoff frequency



Original
@ ogo a GpsGe

Applying the BLPF) I

- m

aaaaaaadd

-

‘ ILPF, cutoff 10
Energy 87%

EE ¥ | ..
ILPF, cutoff 30 a
Energy 93.1% | = ©

I

‘00.“‘."

..o.... |
A a IIELPF, Cl.lgtgf?f 0?0
nergy 95.7%
I

.aaaaaaa

coaom B .. -
/! \ ILPF, cutoff 160 a

Energy 97.8%  ®®®

aaaaaaadd

ab
cd
f

Order 2

- m B . . -
ILPF, cutoff 460

T a Energy 99.2%

e SR
SaimA ety
D A e e |
s N i IT
e AR
[Pt A ‘-,...{_ o
S

aaaaaaadd

FIGURE 4.45 (a) Original image. (b)—(f) Results of filtering using BLPFs of order 2
requencies at the radii shown in Fig. 4.41.C



Different-Order BLPF

abecd

FIGURE 4.46 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity
profiles through the center of the filters (the size in all cases is 1000 > 1000 and the cutoff frequency is 3).
Observe how ringing increases as a function of filter order.



Gaussian Lowpass Filters

H(u, v) H(u, v)

—v 1.0
0.667

/Doz 100

= D(u, v)

-

abc

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D.

H (u,v) _ e—DZ(u,v)/zDg



Applying the GLPF

@
i

aaaaaaad

L J

»a
I

ol“t.aua

5 el
I

aaaaaaaa

()]
o000 :

aaaaaaadd

ab
cd
e f

11

aaaaaaadd

FIGURE 4.48 (a) Original image. (b)—(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs 4.42 and 4.45.
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