Today's Agenda

Review for Exam2

Announcement

Exam 2 is scheduled on Tuesday, Nov. 7, 1:15pm -2:30 pm in class through Blackboard

Cover materials until Nov. 2 Most of materials from class lecture notes 90% materials are from class lecture notes after Exam 1.

Open-book and open-notes

Make-up exams are not allowed except excusable absences (<u>http://bulletin.sc.edu/content.php?catoid=52&navoid=1280#</u> <u>Attendance_Policy</u>) with appropriate documentation and advanced notice.

Review

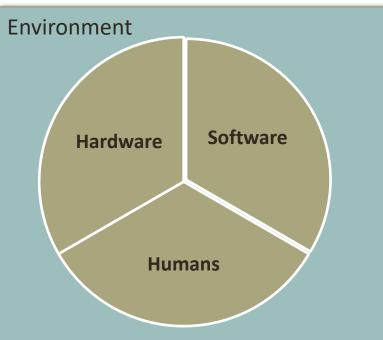
What is HCI?

 <u>HCI</u> "concerned with the <u>design</u>, <u>evaluation</u>, and <u>implementation</u> of <u>interactive computing systems for human</u> <u>use".</u>"

What is Interaction Design?

Interaction Design focuses on designing interactive products to support the way people communicate and interact in their everyday and working lives

Which one is a broader concept?


HCI: Approach to Understanding A System

- A system is a collection of <u>entities</u> that interact to accomplish a <u>goal/task</u> which could not be obtained independently
- System optimization should include all elements:
 - Hardware

Technology variables

- Software
- Humans→ person variables
- Environment

 $^{
m {\scriptstyle V}}$ environment variables

Goals of HCI – Usability Goals

Usability refers to ensuring that interactive products are:

- 1. Easy to use (effectiveness)
- 2. Efficient to use (efficiency)
- 3. Safe to use (safety)
- 4. Having good utility (utility)
- 5. Easy to learn (learnability)
- 6. Easy to remember how to use (memorability)

Fundamental to the quality of UX

Goals of HCI – UX Goals (Table 1.1 ID)

UX goals cover a range of emotions and felt experience

- Desirable aspects
 - Satisfying, enjoyable, exciting,
 - Helpful, engaging, ...
- Undesirable aspects
 - Boring, frustrating, unpleasant, ...

Most of them are subjective

Interactive Design Process

Four basic activities:

- Establish requirements
- Design alternatives
- Make prototype
- Evaluate

The design process is executed iteratively

Six Design Principles (ID Ch. 1)

- 1. Visibility Can I see it?
- 2. Feedback What is it doing now?
- 3. Affordance How do I use it?
- 4. Mapping What is the relationship between things?
- 5. Constraint Why can't I do that?
- 6. Consistency I think I have seen this before?

What is Evaluation

Evaluation, in general...

 Gather data about the usability of a design for a particular activity by a specified group of users

Goals

- Assess extent of system's functionality
- Assess effect of interface on user
- Identify specific problems with system

Forms of Evaluation

- Formative (predictive) evaluation
 - As project is in progress. All through design lifecycle. Early, continuous, and iterative.
 - "Evaluation of the design"

Summative evaluation

- After a system has been finished. Make judgments about final product.
- "Evaluating the implementation"

Evaluation Methods

Pre- & Post-prototype

- Surveys: questionnaires
- Surveys: interviews
- Surveys: focus groups
- Functional analysis
- Task analysis

Post-prototype

- Heuristic evaluation
- Personas
- Cognitive walkthrough
- Card Sorting
- Field/ ethnographic
- User testing

You should know

- Experiments
- How to perform these evaluation methods
- When we should apply these methods
- What the pros and cons of these methods are

Questionnaires

Surveys capture information about the individual

- Demographic data
- Preference and attitude data
- Performance and use data

	h	EXCE	illen	r ood	
(C) Ve	0	d Jood	
	5	2	AN	erac	
		5	Ś	poor	

Questionnaires

Two fundamental types of questionnaires:

1. Standardized

- E.g., IQ, ACT/SAT, LSAT, NASA-TLX
- Usually have validity and reliability measures
- Comparative data is available from other studies
- Cannot collect product specific information

2. <u>Custom</u>

- You create your own
- Can collect specific information (e.g., specific problem or product)
- Must establish validity and reliability measures
- Cannot compare to other studies

Qualities of a "Good" Questionnaire

- 1. The responses to the questionnaire help meet the objectives of the research
- 2. It has high reliability & validity
- 3. It is easy for the users to take
 - Easy to understand
 - Maintains the users interest throughout the questionnaire
- 4. It is easy to administer
- 5. It is easy to analyze

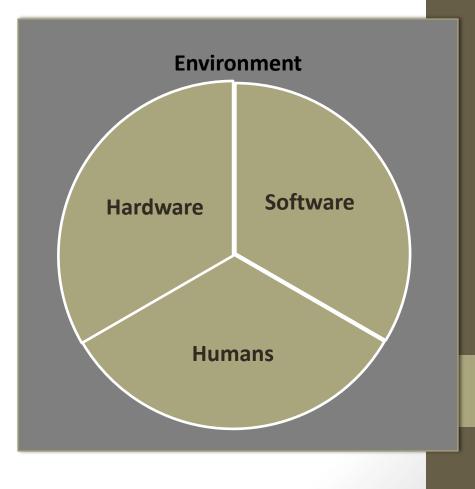
Steps in Developing a Questionnaire, Interview, or Focus group

- 1. Decide what information is required.
- 2. Define the target respondents.
- 3. Choose the method of reaching your target respondents.
- 4. Decide on question content.
- 5. Develop the question wording.
- 6. Put questions into a meaningful order and format.
- Check the length of the questionnaire/interview/focus group.
- 8. Pre-test the questions.
- 9. Develop the final survey form.

Step 5: Develop the Question Wording

- Four types of questions
 - Closed-ended,
 - Open-ended,
 - Open response-option,
 - Likert-scale questions
- Question considerations
 - Can the user answer the question?
 - Are there external events that bias the answers?
 - Is there ambiguity in the question?
 - Are the questions leading/loaded?
 - Are there implied alternatives in the question?
 - Are there 2 questions in the question?
 - Have you asked everything?

Functional Analysis


- What are functions?
 - the activities <u>that must be performed</u> to accomplish a goal
- What are the major functions to be performed by the system?
- Two methods
 - Functional flow diagrams
 - Decision-action diagrams

Function Allocation

• <u>Purpose</u>:

Determine whether it be performed by human or machine

- <u>What element can best</u> <u>perform each function?</u>
 - Need to understand the capabilities of each of the elements
 - Use MABA-MABA lists

MABA – MABA List

• <u>Human are better at:</u>

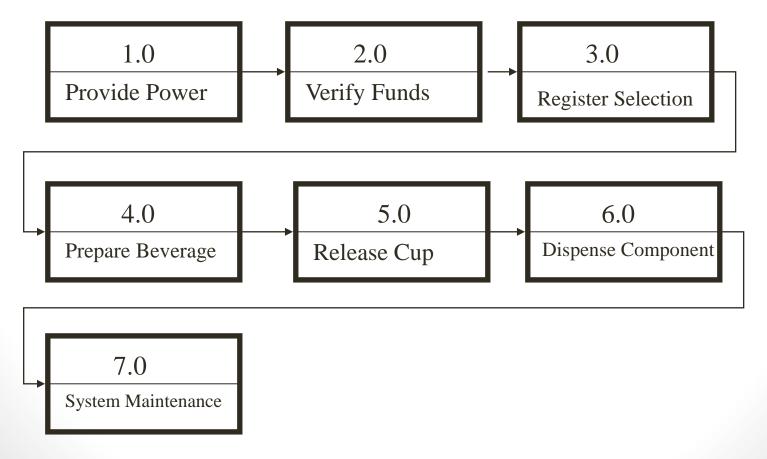
- Detecting small changes of visual, auditory, chemical energy
- Perceiving patterns of light or sound
- Improvising and using flexible procedures
- Reasoning inductively
- Exercising judgment

Machines are better at:

- Responding quickly to control signals
- Applying great force smoothly and precisely
- Erasing information completely
- Reasoning deductively

Functional Flow Diagrams

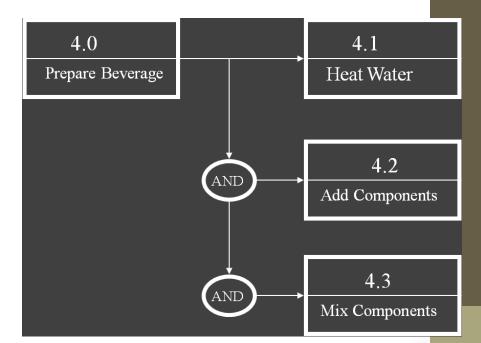
- Illustrates the activities <u>that must be performed</u> to accomplish a goal
- Arranges these functions within the system in sequential manner


Rules:

- 1. Functions represented as rectangles
- 2. Functions represented as verb + noun
- 3. Numbering (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)
- Go down to the level of detail that is necessary, and usually, each level is a separate page

Functional Flow Diagrams

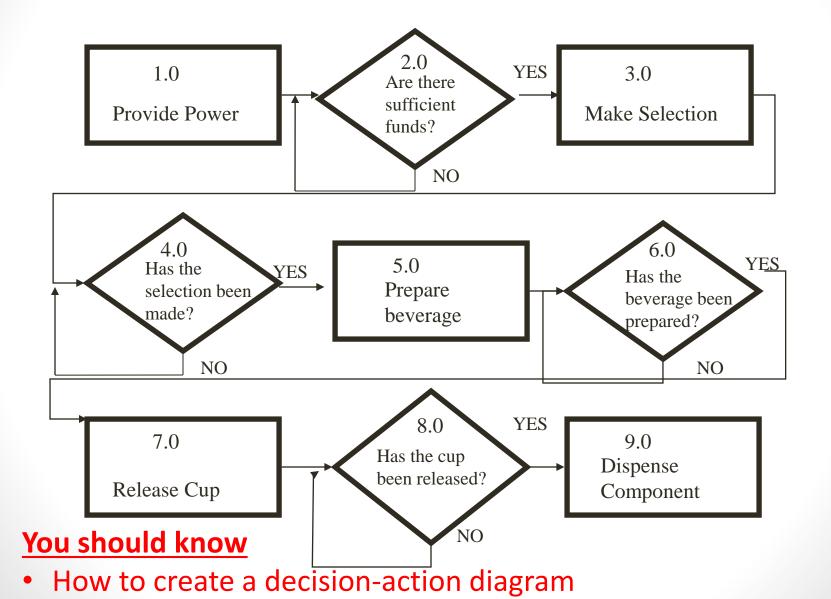
Rules: 5. Top level


- Put top level functions horizontally
- Top level functions end in .0

Functional Flow Diagrams

Rules:

- 6. Note numbering (4.1, 4.2, etc)
- 7. Goes left to right, top to bottom
- 8. Use AND/OR
- 9. Guideline: don't want more than 3 things ANDed


You should know

• How to create a functional flow diagram

Decision-Action Diagram

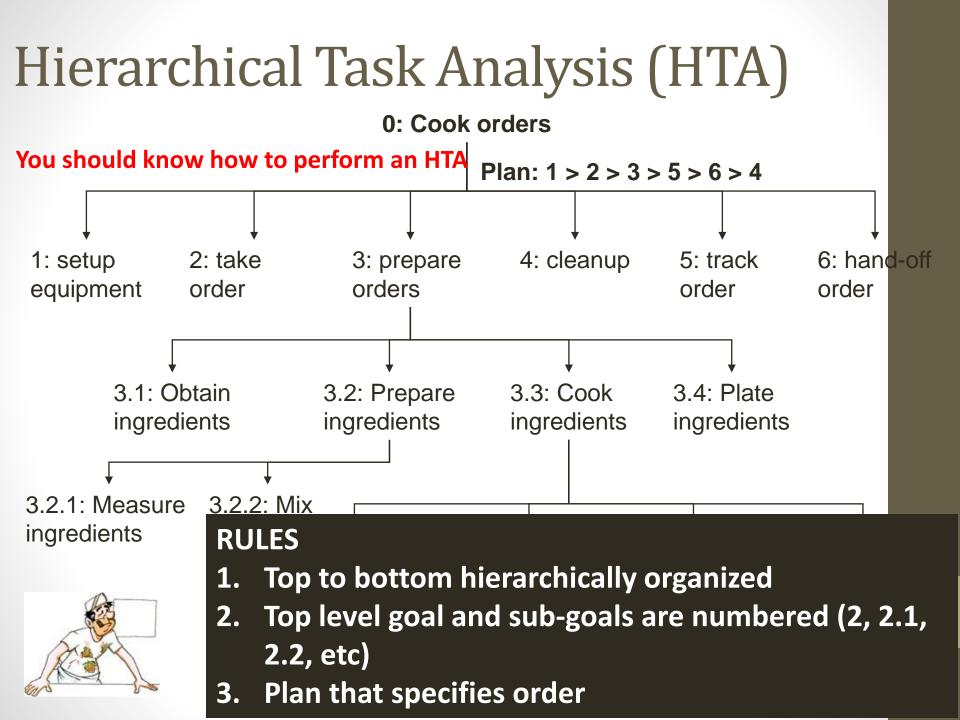
- Similar to functional flow diagram, BUT it includes decisions (cognitive component)
 - Functions are still rectangles
 - Decisions (Yes/No) are diamonds
- Decisions require displays/controls if that decision is allocated to humans

Top Level

Task Analysis

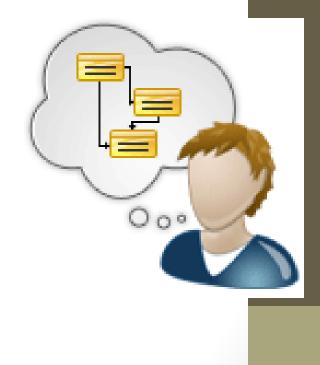
- <u>Definition</u>: "Systematically describing human interaction with a system to understand how to match the demands of the system to human capabilities" (Wickens, Lee, Liu, & Becker, 2004)
 - What will the <u>human</u> do?
 - Identify the full range of tasks that the <u>user</u> performs with the product or system
 - Uncovers
 - Criticality Potential errors and how those affect performance
 - Duration Time allowed or time required
 - Difficulty Conditions that are incompatible with human performance capabilities

When do we conduct a task analysis?


At early stage before performing design work

Conducting a Task Analysis

- Step 1: Decide the purpose of the analysis
- Step 2: Define the top level task goal


For each new goal, repeat

- Step 3: Describe the task actions
- Step 4: Decompose the goal
- Step 5: Stop

Cognitive Walkthrough

- The HCI evaluators (more than one is best) step though using system
- Assess usability through <u>simulation</u> of way users explore with interactive system
- Try to predict what user will do
- Great for the early stages of development

What do You Need for a Cognitive Walkthrough?

- An indication of who the users are (personas)
- 2. Fairly detailed prototype of the system.
- 3. A complete, written list of the actions needed to complete tasks with the given prototype

Cognitive Walkthrough – What do You Ask?

- 1. Does the user <u>understand</u> that this subtask is needed to reach the user's goal?
 - Will users try to produce whatever effect the given action has?
- 2. Will the user <u>notice</u> that the correct action is available?
 - E.g. is the button visible?
- 3. Once found, will they know it is the <u>right action</u> for the desired effect?
 - E.g. the right button is visible but the user does not understand the text and will therefore not click on it.

4. Does the user get <u>feedback</u>?

 Will the user know that they have done the right thing after performing the action?

Why (or Why Not) Use Cognitive Walkthroughs

<u>Strengths?</u>

- No need for untrained users
- Fast results

• Weaknesses?

- Need a group of experts practice makes perfect
- Need to make assumptions about what user will do

What is Card Sorting?

- Card sorting is a user-centered design method for increasing a system's "findability".
- Card sorting is a link between
 - how people think/organize \rightarrow Website structure
- The process involves sorting a series of cards, each labeled with a piece of content or functionality, into groups that make sense to the users.

Why is It Useful?

Why use it?

- Quick
- Inexpensive
- Reliable

What it gives you

 an overall structure for your information, as well as suggestions for navigation, menus, and possible taxonomies

You learn..

- How different people think about, organize, and expect to access your content
- A bit about the language/terminology used by a particular group

Open Sort vs. Closed Sort

Open Sort

- Participants are asked to organize topics from content within your website into groups that make sense to them
- Then they name each group they created in a way that they feel accurately describes the content
- Use an open card sort to learn how users group content and the terms or labels they give each category

Closed Sort

- Participants are asked to sort topics from content within your website into **pre-defined categories**
- A closed card sort works best when you are working a already fixed navigation/menu, and you want to learn how users sort content items into each category

Card Sorting Tips

- 1. Don't expect the same results discrepancies are good
- 2. Look for more info in the conversations than in the results (can ask participants to "think aloud")
- Be clear on your intentions are validating (closed) or discovering (open)
- Don't equate your final card sort as your site structure -- look at the data as "input" because translation is still required
- 5. Run with actual users, but you can also use internally within your design team!
- 6. Can be conducted individually and in groups of people

Heuristic Evaluation

- Several "evaluators" <u>independently</u> critique a system using shared set of heuristics (principles or rules of thumb)
- Perform two or more passes through system
 - Inspect
 - Evaluate against heuristics
 - Find "problems"
 - Subjective & liberal (if you think it is a problem, then it is)

Heuristic Evaluation: The Process

- 1. Gather inputs
- 2. Evaluate system
- 3. Severity rating
- 4. Debriefing

Jakob Nielsen's 10 Heuristics

- **1. Visibility of system status**
 - keep users informed via feedback
- 2. Match between system and the real world
 - Speaking users' language
- 3. User control and freedom:
 - Support undo and redo
- 4. Consistency and standards:
 - Follow conventions
- 5. Error prevention:

Jakob Nielsen's 10 Heuristics

- 6. Recognition rather than recall:
 - Minimize the need of memorization
- 7. Flexibility and efficiency of use:
 - Accelerators for experienced users
- 8. Aesthetic and minimalist design:
 - Concise and relevant information
- 9. Help users recognize, diagnose, and recover from errors:
 - Helpful error messages

10. Help and documentation:

Heuristic Evaluation: Benefits and Weaknesses

- <u>Benefits</u>
 - Highly cost effective and very fast to employ
 - Easy to learn and use

Weaknesses

- Need to employ more than one evaluator to get robust results.
- Want at least 3 evaluators preferably 5

Field / Naturalistic Observation

Planning

What, where, and when to observe / record?

Video recordings or screen capture (if ethical)

- Taxonomy of behaviors
- Performance measures, such as
 - # of clicks
 - Time to complete task

Hawthorne Effect (observer effect) - changes

in behavior that occur when people know that others are observing them

Assembly line workers

Pros / Cons

Pros:

- + Large amounts of rich data
- + Capture events not duplicated in lab
- + In depth understanding

Cons:

- People act differently
- Observer expectancies

User Testing

- Often less "experimental" than normal lab studies
- Used in industry
- Procedure
 - Select a set of tasks (10-30 common tasks)
 - Give the user the information required to do the task
 - Watch
 - Record behaviors of interest
- As your prototype becomes more refined, usability testing becomes more quantitative.

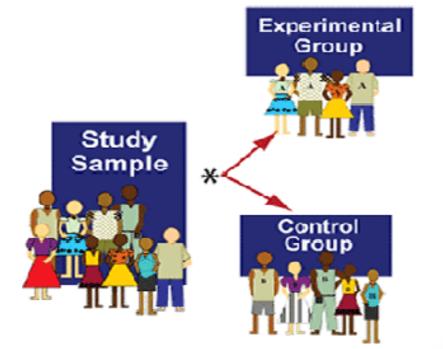
User Testing Metrics

The most common metrics

- Errors
- Time to perform tasks
- Time to perform subtasks
- User subjective reactions (e.g., satisfaction, preferences)

General categories of metrics

- Efficiency
- Effectiveness
- User satisfaction


Experimental Designs

- Allow the researchers to test specific hypotheses
- Examine relationships between an <u>independent</u> <u>variable</u> and a <u>dependent variable</u>
- Two types of variables in experimental designs
 - The **independent variable (IV)** is *manipulated* by the experimenter
 - The <u>dependent variable (DV)</u> is *measured* by the experimenter to assess the impact of the independent variable

Experimental and Control Groups

Participants are assigned to one of two groups

- Experimental (or Treatment) group receives some sort of intervention or manipulation
- <u>Control (or Comparison) group</u> receives no intervention

Experimental Designs

<u>Between-Subjects Design</u>

• Each participant is assigned to only one of the possible conditions or groups

Within-Subjects Design

Each participant experiences every condition

Establishing Causality

- A <u>confound</u> is a variable that affects the dependent variable and may also vary between conditions or groups
 - Provides an alternative explanation for relationship
 - To establish cause, a researcher must control for all confound variables

Analyzing Descriptive Data

- <u>Descriptive</u> statistics
 - Summary of data
 - "describes" the data
- Measures of Central Tendency
 - **Mode:** Most frequently occurring score
 - Median: Halfway point in a set of data
 - Mean: Arithmetic average of the scores
- Measures of Variability
 - **Range:** Difference between highest and lowest score
 - Standard Deviation: Average difference between each score and the mean of the data set

Ethical Guidelines for HCI Researchers

All researchers must:

- 1. Obtain informed consent from participants
- 2. Minimize any discomfort and risk to participant
- 3. Ensure participants will not suffer any long-term negative consequences
- 4. Treat any information from participant as confidential
- 5. Debrief the participant afterward
- The Role of the IRB

Good luck on your exam!

Quiz #5

- Starts from 2:15pm,
- Due at 2:30pm
- Open book and open notes