Today's Agenda

Review for Exam 1

Exam 1

Questions in Exam 1 including

- True/false
- Single-choice
- Short answer
- Case study

Graduate students will have a different exam. Make sure you use the correct version

Review for Exam 1

What is HCI?

 <u>HCI</u> "concerned with the <u>design</u>, <u>evaluation</u>, and <u>implementation</u> of <u>interactive computing systems for human</u> <u>use".</u>"

What is Interaction Design?

Interaction Design focuses on designing interactive products to support the way people communicate and interact in their everyday and working lives

Which one is a broader concept?

HCI: Approach to Understanding A System

- A system is a collection of <u>entities</u> that interact to accomplish a <u>goal/task</u> which could not be obtained independently
- System optimization should include all elements:
 - Hardware

Technology variables

- Software
- Humans→ person variables
- Environment

 $^{
m {\scriptstyle V}}$ environment variables

Goals of HCI – Usability Goals

Usability refers to ensuring that interactive products are:

- 1. Easy to use (effectiveness)
- 2. Efficient to use (efficiency)
- 3. Safe to use (safety)
- 4. Having good utility (utility)
- 5. Easy to learn (learnability)
- 6. Easy to remember how to use (memorability)

Fundamental to the quality of UX

Goals of HCI – UX Goals (Table 1.1 ID)

UX goals cover a range of emotions and felt experience

- Desirable aspects
 - Satisfying, enjoyable, exciting,
 - Helpful, engaging, ...
- Undesirable aspects
 - Boring, frustrating, unpleasant, ...

Most of them are subjective

Fundamental Beliefs

- Things are built to serve people
- Individual differences exist
- For whom do you design?
- Can't accommodate everyone
- Design influences behavior and well being
- Empirical data will provide the answers

What HCI is <u>Not</u>

- Not just applying checklists and guidelines
- Not using oneself as the model for designing things
- Not just common sense

Interactive Design Process

Four basic activities:

- Establish requirements
- Design alternatives
- Make prototype
- Evaluate

The design process is executed iteratively

Six Design Principles (ID Ch. 1)

- 1. Visibility Can I see it?
- 2. Feedback What is it doing now?
- 3. Affordance How do I use it?
- 4. Mapping What is the relationship between things?
- 5. Constraint Why can't I do that?
- 6. Consistency I think I have seen this before?

Human Abilities – Auditory System

Sound - A wave of pressure created when an object vibrates

Physical

amplitude frequency waveform complexity physical location

Perceptual

- \rightarrow loudness
- \rightarrow pitch
- \rightarrow timbre
- \rightarrow apparent location

Auditory alarms - Designing good alarms

- 1. Not above danger level for hearing (85-90 dB)
- 2. Not startle (rise time)
- 3. Not disrupt understanding of other signals
- 4. Should be informative (E.g., earcons, voice/speech)

Enhancing Auditory Performance

Designer must consider:

- Ambient noise (environment analysis) -
- Frequency (pitch) of sound

Masking

- Intensity (loudness) of the sound
- Duration of the sound

Depends on the user, the task, the environment

Human Abilities - Vision

Photoreceptors:

- 6.5 M Cones (color vision)
 - Mostly at Fovea
 - Fewer blue cones at Fovea, mostly red/green
- 100 M Rods (night vision)
 - Spread throughout retina

Brightness adaptation

Brightness discrimination

Object Perception

How do we perceive separate features, objects, scenes, etc. in the environment?

- <u>"Bottom up processing"</u>
 - Data-driven
 - Sensation reaches brain, and then brain makes sense of it
- <u>"Top down processing"</u>
 - Cognitive functions inform our sensation
 - E.g., walking to refrigerator ^{Bottom-up} in middle of night

Illusory Contours

Perception of an edge where no edge is explicitly present in the stimulus.

- The perception of the edge is due to the relations among the features.
- Clearly there is more to object perception than just the stimulus features alone.

Figure & Ground Perception

When looking at a visual scene, we tend to see coherent shapes (figures) that are in front of a background area (ground).

 The figure will be perceived as separate from its ground.

Factors that Affect Figure-Ground Perception

- 1. Size of Features
 - The element with the smaller area will tend to be perceived as the figure.
- 2. Symmetry
 - Symmetric areas tend to be perceived as the figure.
- 3. Vertical & Horizontal Layouts
 - Elements oriented in the vertical or horizontal direction are more likely to be perceived as the figure than elements in a diagonal orientation.
- 4. Meaningfulness
 - Meaningful areas are more likely to be perceived as the figure.

Visual Search

- Search time = $\frac{N \times I}{2}$
 - N = number of items
 - I = how much time you spend on each item
- Parallel vs. serial search

Some Visual Guidelines

- 1. Large font is good, so is contrast
- 2. Don't use too many graphics
 - distracting and bad for screen readers
- 3. Something is important?
 - make it "pop" (bottom up processing) to reduce visual search
- 4. Simple text easier to read and understand
- 5. "Color match" when you can (consistency)

Some Visual Guidelines

- 6. Never blur pictures
 - bad for low vision
- 7. Blue is hard to read
 - less blue cones in fovea
- 8. Group similar items
- 9. Use logical visual order helps with read flow
- **10**. Think about foreground and ground

Cognition

Norman's two general modes: (ID 3.2)

- Experiential cognition
 - effortless
 - Perceive, act, and react
 - Requires a certain level of expertise and engagement
 - E.g., driving, reading, conversation
- Reflective cognition and slow thinking
 - Mental effort
 - Involving attention, judgement, decision making
 - New ideas and creativity, e.g., designing, learning, and writing a paper/book

Human Information Processing -Attention

Figure 1.3 A model of human information processing stages.

- Mental effort
- <u>Selecting</u> sensory channels for further processing

Selective Attention

Driven by four factors:

- I. Salience
- Bottom-up
- 2. Expectancy
- Top-down
- 3. Value
- 4. Effort

Does NOT guarantee perception

Design Guidelines - Attention

- Make information salient
- Use techniques like animation, color, underline, ordering, sequencing, and spacing of items to achieve attention
- Avoid cluttering the interface with too much information
- Search engines and forms should use simple and clean interfaces

Figure 1.3 A model of human information processing stages.

Working Memory (WM)

- "Think about" or manipulate information
- Temporary storage

Long-term Memory (LTM)

Working Memory Limitations

Limited capacity: 7±2 items, 15-20seconds

Chunking is based on

- Familiarity with links between items
- Past experience (LTM)
- Advantageous because
- FBI CIA USA

Social Security #

123 45 678

FBICIAUSA

VS.

- Increases the amount of information stored in WM
- Aids retention by making use of LTM associations
- •Easier to rehearse (and transfer to LTM)

Confusability & Similarity

- Similarity between items in WM increase confusability
- Decay and time more disruptive for similar material

WM: Design Guidelines

- 1. Minimize working memory load (avoid the user having to remember)
- 2. Provide placeholders for sequential tasks (what steps have been completed? e.g., automated check out)
- 3. Exploit chunking (meaningful sequences e.g., 1-800-438-4357 ; 1-800-GET-HELP)
- 4. Avoid "0"s (regal member number: 0000000100290978)
- Consider WM limits in instructions (Before doing X and Y, do A) (Do A. Then do X and Y)

Human Information Processing – Decision Making

Figure 1.3 A model of human information processing stages.

Wickens Model of Human Information Processing

Decision Making

What is a decision making task?

- A choice between alternatives
 - Example: Course A or Course B?
- Some information available about the choices
 - Example: Course A: MWF, Course B: TTH
- Time frame longer than a second
 - Decision making vs choice-reaction
 - Example: Drop day is in October
- Uncertainty & risks
 - Example: what type of exams are involved in A

Decision Making

- Three processes or steps
 - Cues go into working memory
 - Using cues, we generate hypotheses
 - Based on cues and hypotheses, we plan and act
- Normative decision models
 - How people ideally should make decisions
 - Mathematical assessments of probability
- Issues pertaining to decision making
 - Cognitive fixation
 - Stay fixated on particular hypothesis (chosen for testing)
 - Stay fixated on particular solution even when not working
 - Confirmation bias
 - Seek cues that confirm; avoid those that disconfirm
 - Interpret ambiguous evidence as supportive

Improving Decision Making

• Redesign the task

Provide information – not data

Proceduralization (Training)

Practice normative decision making skills as much as possible

Automation (Decision support system)

- Computers can present many sources of data in aggregated format
- Decision making can be informed by more sources of information
- Computer aids can offload working memory load by displaying different hypotheses that fit data
- Computers can also display all recommended actions based on data
- Give feedback (results of decision) as soon as possible: clear and diagnostic

Prototyping Dimensions

1. Representation

- How is the design depicted or represented
- Textual description or visuals and diagrams

2. Scope

Just the interface or including computational components

3. Executability

• Can the prototype be run?

4. Maturation

What are the stages of the product as it comes along

More terminology

- Low-fidelity prototype
 - Paper-based sketches without user interactions
 - Focus on functionality
 - Less focus on aesthetics
 - Early visualization of design alternatives
 - Quick to create and easy to change
- High-fidelity prototype
 - Computer-based with user interactions
 - Close to true representation
 - More effective to collect performance data

Ethical Guidelines for HCI Researchers

All researchers must:

- 1. Obtain informed consent from participants
- 2. Minimize any discomfort and risk to participant
- 3. Ensure participants will not suffer any long-term negative consequences
- 4. Treat any information from participant as confidential
- 5. Debrief the participant afterward
- The Role of the IRB

Good luck on your exam!