
On the Midterm Exam 

• Monday, 10/17 in class 

• Closed book and closed notes 

• One-side and one page cheat sheet is allowed 

• A calculator is allowed  

• Covers the topics until the class on Wednesday, 10/12 



Today’s Agenda 

Affine transformation 
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Homogeneous Coordinates 

In general, the homogeneous coordinates for a 3D point [x 
y z] is given as 

𝑃 = 𝑥𝑥 𝑦𝑥 𝑧𝑥 𝑤 𝑇 = [𝑤𝑥 𝑤𝑦 𝑤𝑧 𝑤] 𝑇 

When w≠0, we return to a 3D point by P = [𝑥 𝑦 𝑧 1] 

where    𝑥←𝑥𝑥/𝑤,𝑦←𝑦𝑥/𝑤, 𝑧←𝑧𝑥/𝑤 

If w=0, the representation is that of a vector 
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Change of Frames 

We can apply a similar process in homogeneous 
coordinates to the representations of both points 
and vectors 

 
 

 

 

Any point or vector can be represented in either 
frame 

We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3  

Consider two frames: 
(P0, v1, v2, v3) 
(Q0, u1, u2, u3) P0 v1 

v2 

v3 

Q0 

u1 
u2 

u3 
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Representing One Frame in 
Terms of the Other 

u1 = γ11v1+γ12v2+γ13v3 
u2 = γ21v1+γ22v2+γ23v3 
u3 = γ31v1+γ32v2+γ33v3 
Q0 = γ41v1+γ42v2+γ43v3 +P0 
 

Extending what we did with change of bases 

defining a 4 x 4 matrix 



















1γγγ
0γγγ
0γγγ
0γγγ

=

434241

333231

232221

131211

M 𝐔 Q0 = 𝐕 𝑃0 M𝑇 
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Changing Representations 

Any point or vector has a representation in a frame 
 
a=[α1 α2  α3 α4 ] in the first frame 
b=[β1 β2  β3 β4 ] in the second frame 

where α4 = β4 = 1 for points and α4 = β4 = 0 for vectors  

We can change the representation from one frame to the 
other as 

 

The matrix M is 4 x 4 and specifies an affine transformation in 
homogeneous coordinates 

a=MTb and b=(MT)-1a 
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Affine Transformations 

Every linear transformation is equivalent to a change in frames 

Every affine transformation preserves lines: a line in a frame 
transforms to a line in another frame 

An affine transformation  

• has only 12 degrees of freedom because 4 of the elements in 
the matrix are fixed and  

• are a subset of all possible 4 x 4 linear transformations 



Example 

Suppose we have two bases 𝒗𝟏,𝒗𝟐,𝒗𝟑 and 𝒖𝟏,𝒖𝟐,𝒖𝟑 for two 
frames such that 

 

and 

What is M matrix? 

𝑢1 = 𝑣1 𝑢2 = 𝑣1 + 𝑣2 𝑢3 = 𝑣1 + 𝑣2 + 𝑣3 

M =

1 0 0 0
1 1 0 0
1 1 1 0
1 2 3 1

 

u1 = γ11v1+γ12v2+γ13v3 
u2 = γ21v1+γ22v2+γ23v3 
u3 = γ31v1+γ32v2+γ33v3 
Q0 = γ41v1+γ42v2+γ43v3 +P0 
 

M𝑻 −𝟏 =

1 −1 0 1
0 1 −1 1
0 0 1 −3
0 0 0 1

 

𝑄0 = 𝑃0 + 𝑣1 + 2𝑣2 + 3𝑣3 



Example 

A point P in the first frame will transformed to P’ in the second 
frame 

 

 

 

A vector w in the first frame will transformed to w’ in the second 
frame 

 

 

𝑃 =
1
2
3
1

 𝑃′ = M𝑻 −𝟏𝑃 =
0
0
0
1

 Origin of the 
second frame 

𝒘 =
1
2
3
0

 𝒘′ = M𝑻 −𝟏𝒘 =
−1
−1
3
0
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The World and Camera Frames 

In OpenGL, the base frame that we start with is the 
world frame  

Eventually we represent entities in the camera 
frame by changing the world representation using 
the model-view matrix 

Initially these frames are the same (M=I) 

Changes in frame are then defined by 4 x 4 matrices 
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Moving the Camera Frame  

If objects are on both sides of z=0, we must 
move camera frame or object frame 



















=

100
0100
0010
0001

d

M

𝑢1 = 𝑒1 𝑢2 = 𝑒2 𝑢3 = 𝑒3 

𝑄0 = 𝑃0 + 𝑑𝑒3 

Use a 3-tuples to 
represent the object frame 
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General Transformations 

A transformation maps points to other points and/or vectors to 
other vectors 

Q=T(P) 

v=T(u) 
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Affine Transformations 

Line preserving 

Characteristic of many physically important transformations 
• Rigid body transformations: rotation, translation 
• Scaling, shear 

Note: we need only transform endpoints of line segments in 
graphics and the line segment between the transformed 
endpoints is generated during rasterization 
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Pipeline Implementation 

transformation rasterizer 

 u 

v 

 u 

 v 

T 

T(u) 

T(v) 

T(u) 
T(u) 

T(v) 

T(v) 

vertices Transformed 
vertices 

pixels 

frame 
buffer 

(from application program) 
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Notation 

We will be working with both coordinate-free representations of 
transformations and representations within a particular frame 

 P,Q, R: points in an affine space 

 u, v, w: vectors in an affine space 

 α, β, γ: scalars 

 d, s, l: representations of points/vectors 
-vector of 4 scalars in homogeneous coordinates 
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Translation 
Move (translate, displace) a point to a new location 

 

 

 

 

Displacement determined by a vector d 
• Three degrees of freedom 
• P’=P+d 

P 

P’ 

d 
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Move All Points on the Object 

object translation: every point displaced 
        by same vector 
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Translation Using Representations 

Using the homogeneous coordinate representation in some frame 

     p=[ x y z 1]T 

     p’=[x’ y’ z’ 1]T 

     d=[dx dy dz 0]T 

Hence p’ = p + d or 

     x’=x+dx 
     y’=y+dy 
     z’=z+dz 

note that this expression is in  
four dimensions and expresses 
point = vector + point 
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Translation Matrix 

We can also express translation using a 4 x 4 matrix T in 
homogeneous coordinates 

p’=Tp where 

 

 

 

This form is better for implementation because all affine 
transformations can be expressed this way and multiple 
transformations can be concatenated together 



















=

1000
d100
d010
d001

  
z

y

x

T
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Scaling 



















1000
000
000
000

z

y

x

s
s

s

S = S(sx, sy, sz) = 

x’=sxx 
y’=syy 
z’=szz 

p’=Sp 

Expand or contract along each axis (fixed point of origin) 
p=[ x y z 1]T  and   p’=[x’ y’ z’ 1]T 
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Reflection 

corresponds to negative scale factors 

original sx = -1 sy = 1 

sx = -1 sy = -1 sx = 1 sy = -1 
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Shear 

Helpful to add one more basic transformation 

Equivalent to pulling faces in opposite 
directions 
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Shear Matrix 

Consider simple shear along x axis 

x’ = x + y cot θ 
y’ = y 
z’ = z 

















 θ

1000
0100
0010
00cot 1

H(θ) =  



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Rotation in 2D 

Consider rotation about the origin by θ 
degrees 

• radius stays the same, angle increases by θ 

x’=x cos θ –y sin θ 
y’ = x sin θ + y cos θ 

x = r cos φ 
y = r sin φ 

x' = r cos (φ + θ) 
y' = r sin (φ + θ) 
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Rotation about the z axis 

Rotation about z axis in three dimensions leaves all 
points with the same z 

• Equivalent to rotation in two dimensions in planes of constant z 
 
 
 
 

• or in homogeneous coordinates 
        p𝑥 = R𝑧(𝛼)p 

𝑥𝑥 = 𝑥 cos𝛼 –𝑦 sin𝛼 
𝑦𝑥 = 𝑥 sin𝛼 + 𝑦 cos𝛼 

𝑧𝑥 = 𝑧 

















 −

=

1000
0100
00 cossin 
00sin  cos

)(
αα
αα

αZRRotation Matrix 
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General Rotation About the Origin 

A general rotation about the origin can be decomposed into 
successive of rotations about the x, y, and z axes 

R = Rz(α) Ry(β) Rx(γ)  
α, β, γ are called the Euler angles 

Important:  
• R is unique 
• For a given order, rotations do not commute 
• We can use rotations in another order but with different angles 
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Rotation About a Fixed Point Other than the Origin 

• Move fixed point to origin 

• Rotate around the origin 

• Move fixed point back 

M = T(pf) R T(-pf) 



Instancing 

How do we describe multiple object in a scene? 

Intuitive solution:  

Specify the vertices for each object 

A better solution: 

Specify a set of simple objects with  

• a convenient size, e.g., unit size  

• a convenient location, e.g., centered at its 
gravity center 

• a convenient orientation   
E. Angel and D. Shreiner 
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Instancing 

In modeling, we often start with a simple object centered at the 
origin, oriented with the axis, and at a standard size 

An occurrence of this object is an instance of the object class 

We apply an instance transformation to its vertices to  

   

     

Scale  

Rotate 

Translate 
An instance 
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