Today's Agenda

Geometry

Geometry

Three basic elements

- Points
- Scalars
- Vectors

Three type of spaces

- (Linear) vector space: scalars and vectors
- Affine space: vector space + points
- Euclidean space: vector space + distance

Euclidean Spaces

Distance (scalar) + a vector space

Operations

- Vector-vector addition
- Scalar-vector multiplication
- Scalar-scalar operations
- Inner (dot) products
$v \cdot v>0$ if $v \neq 0 \longrightarrow$ Magnitude (length) of a vector

$$
|v|=\sqrt{v \cdot v}
$$

Distance between two points P \& Q

$$
|P-Q|=\sqrt{(P-Q) \cdot(P-Q)}
$$

Angle between two vectors $\mathrm{v} \& \mathrm{u} \longrightarrow \cos \theta=\frac{u \cdot v}{|u||v|}$

Line Segments

If we use two points to define \mathbf{v}, then

$$
P(\boldsymbol{\alpha})=Q+\boldsymbol{\alpha} v=Q+\boldsymbol{\alpha}(R-Q)=\boldsymbol{\alpha} R+(1-\boldsymbol{\alpha}) Q
$$

For $0 \leq \alpha \leq 1$ we get all the points on the line segment joining R and Q

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Sums and Convex Hull

Consider the "sum"

$$
P=\boldsymbol{\alpha}_{1} P_{1}+\boldsymbol{\alpha}_{2} P_{2}+\cdots+\boldsymbol{\alpha}_{n} P_{n}
$$

Can show by induction that this sum makes sense iff

$$
\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\cdots+\boldsymbol{\alpha}_{n}=1
$$

in which case we have the affine sum of the points $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots . . \mathbf{P}_{\mathrm{n}}$
If, in addition, $\alpha_{i}>=0$, we have the convex hull of $P_{1}, P_{2}, \ldots . . P_{n}$

Smallest convex object containing $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots . . \mathbf{P}_{\mathrm{n}}$

Planes

A plane can be defined by three non-collinear points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Planes

A plane can also be defined by a point and two vectors

$$
T(\alpha, \beta)=P+\beta(1-\alpha)(Q-P)+(1-\beta)(R-P)
$$

$$
T\left(\alpha^{\prime}, \beta^{\prime}\right)=P+\alpha^{\prime} u+\beta^{\prime} v
$$

Parametric form of planes
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Triangles

A triangle can be defined by three nonclinear points

Triangle is convex so any point inside can be represented as an affine sum

> Affine sum
$T(\alpha, \beta)=\alpha \beta P+\beta(1-\alpha) Q+(1-\beta) R$
$\Longrightarrow T\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\alpha^{\prime} P+\beta^{\prime} Q+\gamma^{\prime} R$ where $\begin{aligned} & 0 \leq \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \leq 1 \\ & \alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}=1\end{aligned}$
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Barycentric Coordinates

$T\left(a_{1}, a_{2}, a_{3}\right)=a_{1} P+a_{2} Q+a_{3} R$
where

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}=1 \\
& a_{i}>=0
\end{aligned}
$$

R

The representation is called the barycentric coordinate representation of P
Where is \mathbf{T} if $\mathrm{a}_{\mathrm{i}}<0$? ${ }^{T}$ is outside of the triangle, but on the same plane formed by P, Q, and R
Where is T if $\mathbf{a}_{\mathbf{1}}+\mathbf{a}_{\mathbf{2}} \mathbf{+} \mathbf{a}_{\mathbf{3}} \boldsymbol{\neq 1} \mathbf{~ ? ~} \mathrm{T}$ is not on the same plane PQR

Barycentric Coordinates

Equilateral triangle

right triangle

Barycentric Coordinates

Ray-triangle intersection:

testing if a ray intersects with a triangle

Rendering a triangle

Normals

Every plane has a vector n normal (perpendicular) to it
From point-two vector form $T(\alpha, \beta)=P+\alpha u+\beta v$, we know we can use the cross product to find $n=u \times v$ and the equivalent form

$$
(T-P) \cdot n=0
$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

3D Primitives

So far, we have discussed how to represent 2D geometric objects, the primitives

How about primitives in 3D?
For existing graphics hardware and software, three features describe the 3D objects

- 2D surfaces
- vertices
- Flat, convex polygons, especially triangles

Reference Frame and Coordinate Systems

Until now we have been able to work with geometric entities without using any frame of reference, i.e., in a coordinate-free system

- Coordinate system
- Reference frame

Coordinate Systems

Consider a basis $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$ of $\mathcal{R}^{\boldsymbol{n}}$
A vector in \mathcal{R}^{n} is written $v=\boldsymbol{\alpha}_{1} v_{1}+\boldsymbol{\alpha}_{2} v_{2}+\cdots+\boldsymbol{\alpha}_{n} v_{n}$
The list of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right\}$ is the representation of v with respect to the given basis

We can write the representation as a row or column array of scalars

$$
\boldsymbol{a}=\left[\begin{array}{llll}
\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \cdots & \alpha_{n}
\end{array}\right]^{T}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\cdot \\
\alpha_{n}
\end{array}\right]
$$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

$\mathbf{v}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-4 \mathbf{v}_{3}$

$$
\boldsymbol{a}=\left[\begin{array}{ll}
2 & 3
\end{array}-4\right]^{T}
$$

Note that this representation is with respect to a particular basis

Coordinate Systems

Which is correct?

Both,

because coordinate system is defined in vector space and vectors have no fixed location

Frame of Reference

Need a frame of reference to relate points and objects to our physical world. For example, where is a point? Can't answer without a reference system

A coordinate system is insufficient to represent points
Adding a reference point (origin) to a coordinate system

Frame defined in affine space

- Frames used in graphics
- World frame
- Camera frame
- Image frame

Representation in a Frame

Frame determined by $\left(\mathbf{P}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right)$
Within this frame, every vector can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n} \rightarrow \text { e.g., a 3-tuples } e_{1}=(1,0,0)^{T},
$$

Every point can be written as

$$
P=P_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots .+\beta_{n} v_{n}
$$

$$
\begin{aligned}
& \mathbf{e}_{2}=(0,1,0)^{T}, \\
& \mathbf{e}_{3}=(0,0,1)^{T} .
\end{aligned}
$$

Confusing Points and Vectors

Consider the point and the vector

$$
\begin{aligned}
& P=P_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\ldots+\beta_{n} v_{n} \\
& v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
\end{aligned}
$$

They appear to have the similar representations
$\mathrm{p}=\left[\beta_{1} \beta_{2} \beta_{3}\right] \quad \mathrm{v}=\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]$
which confuses the point with the vector
Vector can be placed anywhere
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley

A Single Representation-Homogeneous Coordinates

If we define $\mathbf{0} \cdot \mathbf{P}=\mathbf{0}$ and $\mathbf{1} \cdot \mathrm{P}=\mathrm{P}$ then we can write

$$
\begin{aligned}
& v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3} 0\right]\left[v_{1} v_{2} v_{3} P_{0}\right] \\
& \mathbf{P}=P_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]\left[v_{1} v_{2} v_{3} P_{0}\right]
\end{aligned}
$$

Thus we obtain the four-dimensional homogeneous coordinate representation

$$
\begin{aligned}
& v=\left[\alpha_{1} \alpha_{2} \alpha_{3} 0\right]^{\mathrm{T}} \\
& \mathbf{p}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]^{\mathrm{T}}
\end{aligned}
$$

Homogeneous Coordinates

In general, the homogeneous coordinates for a 3D point [x $y z]$ is given as

$$
P=\left[x^{\prime} y^{\prime} z^{\prime} w\right]^{T}=\left[\begin{array}{llll}
w x & w y & w z & w
\end{array}\right]^{T}
$$

When $\mathbf{w} \neq \mathbf{0}$, we return to a 3D point by $\mathrm{P}=\left[\begin{array}{lll}x & y & z\end{array}\right]$
where $\quad x \leftarrow x^{\prime} / w, y \leftarrow y^{\prime} / w, z \leftarrow z^{\prime} / w$
If $\mathbf{w}=\mathbf{0}$, the representation is that of a vector

Homogeneous Coordinates and Computer Graphics

Homogeneous coordinates are key to all computer graphics systems

- All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4×4 matrices
- Hardware pipeline works with 4 dimensional representations
- For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
- For perspective, we need a perspective division

Change of Coordinate Systems

Consider two representations of the same vector \boldsymbol{d} with respect to two different bases. The representations are

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{d}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[v_{1} v_{2} v_{3}\right]\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]^{T} \\
& =\beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{3} u_{3}=\left[u_{1} u_{2} u_{3}\right]\left[\beta_{1} \beta_{2} \beta_{3}\right]^{\mathrm{T}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Let } \mathbf{V}=\left[\begin{array}{lll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}
\end{array}\right] \text { and } \mathbf{U}=\left[\begin{array}{lll}
\mathrm{u}_{1} & \mathrm{u}_{2} & \mathrm{u}_{3}
\end{array}\right] \\
\boldsymbol{d}=\mathbf{V} \boldsymbol{a}=\mathbf{U} \boldsymbol{b}
\end{gathered}
$$

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

Changing Representations

The coefficients define a 3×3 matrix

$$
\mathbf{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

and the bases can be related by

$$
\mathrm{U}=\mathrm{VM}^{T}
$$

We can change the representation from one coordinate system to the other as

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b} \quad \text { and } \quad \mathbf{b}=\left(\mathbf{M}^{\mathrm{T}}\right)^{-1} \mathbf{a}
$$

Change of Frames

We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:
$\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
$\left(\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

Any point or vector can be represented in either frame

We can represent $Q_{0}, u_{1}, u_{2}, u_{3}$ in terms of $P_{0}, v_{1}, v_{2}, v_{3}$
E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$
\begin{aligned}
& \mathbf{u}_{1}=\gamma_{11} \mathbf{v}_{1}+\gamma_{12} \mathbf{v}_{2}+\gamma_{13} \mathbf{v}_{3} \\
& \mathbf{u}_{2}=\gamma_{21} \mathbf{v}^{+}+\gamma_{22} \mathbf{v}_{2}+\gamma_{23} \mathbf{v}_{3} \\
& \mathbf{u}_{3}=\gamma_{31} \mathbf{v}^{+}+\gamma_{32} \mathbf{v}_{2}+\gamma_{33} \mathbf{v}_{3} \\
& \mathbf{Q}_{\mathbf{0}}=\gamma_{41} \mathbf{v}_{\mathbf{1}}+\gamma_{42} \mathbf{v}_{2}+\gamma_{43} \mathbf{v}_{3}+\mathbf{P}_{\mathbf{0}}
\end{aligned}
$$

defining a 4×4 matrix

$$
\mathbf{M}=\left[\begin{array}{llll}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
\mathbf{U} & \mathrm{Q}_{0}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{V} & P_{0}
\end{array}\right] \mathbf{M}^{T}
$$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Changing Representations

Any point or vector has a representation in a frame
$\mathbf{a}=\left[\begin{array}{cc}\alpha_{1} & \alpha_{2} \\ \alpha_{3} & \alpha_{4}\end{array}\right]$ in the first frame $\mathbf{b}=\left[\beta_{1} \beta_{2} \beta_{3} \beta_{4}\right]$ in the second frame
where $\alpha_{4}=\beta_{4}=1$ for points and $\alpha_{4}=\beta_{4}=0$ for vectors
We can change the representation from one frame to the other as

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b} \text { and } \quad \mathbf{b}=\left(\mathbf{M}^{\mathrm{T}}\right)^{-1} \mathbf{a}
$$

The matrix \mathbf{M} is 4×4 and specifies an affine transformation in homogeneous coordinates

