Today's Agenda

Input and Interaction

Geometry

OpenGL Sources

OpenGL website

https://www.opengl.org/

Event Types

Window: resize, expose, iconify

Mouse: click one or more buttons

Motion: move mouse

Keyboard: press or release a key

Idle: nonevent

• Define what should be done if no other event is in queue

GLUT Callbacks

GLUT recognizes a subset of the events recognized by any particular window system (Windows, X, Macintosh)

- •glutDisplayFunc
- •glutMouseFunc
- glutReshapeFunc
- glutKeyboardFunc
- •glutIdleFunc
- •glutMotionFunc,
- glutPassiveMotionFunc

These call back functions except the reshape require posting redisplays

glutPostRedisplay();

Using the Keyboard

glutKeyboardFunc(mykey)

glutKeyboardUpFunc(mykey)

void mykey(unsigned char key, int x, int y)Returns ASCII code of key depressed and mouse location

```
void mykey()
{
    if(key == `Q' | key == `q')
        exit(0);
}
```

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Handling Multiple Key Inputs

• For ASCII character

Each key press of will trigger the key callback function

- Use switch & case
- Or use a buffer to store the key strokes buffer[key] = true
- For Non ASCII character
 - Function keys (e.g., F1) or directional keys (e.g. →)
 void glutSpecialFunc(void (*func)(int key, int x, int y));
 - **State modifier keys** (e.g., "Shift" and "Ctrl") glutGetModifiers()

Manage Multiple Windows

• Create a second window

uint id = glutCreateWindow("second window");

- Set the window as the current window for rendering glutSetWindow(id);
- Each window can have its own call back functions

Toolkits and Widgets

Most window systems provide a toolkit or library of functions for building user interfaces that use special types of windows called *widgets*

Widget sets include tools such as

- Menus
- Slidebars
- Dials
- Input boxes

But toolkits tend to be platform dependent

GLUT provides a few widgets including menus

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Menus

GLUT supports pop-up menus

• A menu can have submenus

Three steps

- Define entries for the menu
- Define action for each menu item
 Action carried out if entry selected
- Attach menu to a mouse button
- Register a callback function for each menu

Defining a simple menu

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Menu Actions

• Menu callback

```
void mymenu(int id)
{
    if(id == 1) glClear();
    if(id == 2) exit(0);
}
```

• Add submenus by

Note Menu is a deprecated feature and will not work for a core profile

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Reading Assignments

Chapter 2. of Angels et al

Chapter 2&3 Shreiner et al

Geometric Objects and Transformations

Basic Elements

Geometry is the study of the relationships among objects in an n-dimensional space

 In computer graphics, we are interested in objects that exist in three dimensions

Want a minimum set of primitives from which we can build more sophisticated objects

We will need three basic elements

- Points ← represented by uppercase letters, e.g., P, Q
- Scalars \leftarrow represented by Greek letters, e.g., α , β

Points

- Fundamental geometric object
- Associated with location
- No size & shape

Scalars

Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)

• Examples: the real and complex number systems

Scalars alone have no geometric properties

Vectors

Physical definition: a vector is a quantity with two attributes

- Direction
- Magnitude

Examples include

- Force
- Velocity
- Directed line segments
 - -Most important example for graphics
 - -Can map to other types

Vectors Lack Position

These vectors are identical

• Same length and magnitude

Vectors spaces insufficient for geometry

• Need points

Point-Vector Addition/Subtraction

Points define locations in space

Operations allowed between points and vectors

- Point-point subtraction yields a vector
- Point-vector addition yields a new point

Coordinate-Free Geometry

When we learned simple geometry, most of us started with a Cartesian approach

• Points were at locations in space **p**=(x,y,z)

This approach was nonphysical

- Physically, points exist regardless of the location of an arbitrary coordinate system
- Most geometric results are independent of the coordinate system
 - Example: two triangles are identical if two corresponding sides and the angle between them are identical

Spaces

(Linear) vector space: scalars and vectors

Affine space: vector space + points

Euclidean space: vector space + distance

Vector Operations

Every vector has an inverse

• Same magnitude but points in opposite direction

Every vector can be multiplied by a scalar

There is a zero vector

• Zero magnitude, undefined orientation

The sum of any two vectors is a vector

Use head-to-tail axiom

Linear Vector Spaces

Mathematical system for manipulating vectors

Operations

- Scalar-vector multiplication $\mathcal{U}=\mathcal{U}\mathcal{V}$
- Vector-vector addition: w = u + v

Expressions such as

v = u + 2w - 3r

Make sense in a vector space

Linear Independence

A set of vectors $v_1, v_2, ..., v_n$ is *linearly independent* if

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = \dots = 0$

If a set of vectors is linearly independent, we cannot represent one in terms of the others

If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension, Basis, and Representation

Dimension of the space: the maximum number of linearly independent vectors

• Fixed for a space

In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space

The basis for the space is not unique!

Given a basis v_1, v_2, \ldots, v_n , any vector v can be written as

 $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$

where the $\{\alpha_i\}$ are unique

Changing Representation

The same vector v can be represented differently given different bases

For a basis v_1, v_2, \ldots, v_n , a vector v can be written as

 $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

For a different basis v_1', v_2', \dots, v_n' , v can be written as

$$v = \alpha_1' v_1' + \alpha_2' v_2' + \dots + \alpha_n' v_n'$$

Where

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \mathbf{M} \begin{bmatrix} \alpha_1' \\ \alpha_2' \\ \vdots \\ \alpha_n' \end{bmatrix}$$

Affine Spaces

Point + a vector space

Operations

- Vector-vector addition
- Scalar-vector multiplication
- Scalar-scalar operations
- Point-vector addition
- Point-point addition
- Scalar-Point multiplication \int

For any point define

- $1 \bullet P = P$
- $0 \bullet P = 0$ (zero vector)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine sum

Lines and Rays

Consider all points of the form

- $P(\alpha)=P_0+\alpha \mathbf{d}$
- Set of all points that pass through P₀ in the direction of the vector d
- If $\alpha \ge 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d**

This form is known as the parametric form of

- More robust and general than other forms
- Extends to curves and surfaces

Line Segments

If we use two points to define v, then $P(\alpha) = Q + \alpha v = Q + \alpha (R - Q) = \alpha R + (1 - \alpha)Q$ For $0 \le \alpha \le 1$ we get all the points on the *line segment* joining R and Q

Convexity

An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the object

A line segment is a convex object

$$P(\boldsymbol{\alpha}) = \boldsymbol{\alpha}R + (1 - \boldsymbol{\alpha})Q = \boldsymbol{\alpha}_R R + \boldsymbol{\alpha}_Q Q$$

Affine Sums and Convex Hull

Consider the "sum"

$$P = \boldsymbol{\alpha}_1 P_1 + \boldsymbol{\alpha}_2 P_2 + \dots + \boldsymbol{\alpha}_n P_n$$

Can show by induction that this sum makes sense iff $\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$

in which case we have the *affine sum* of the points P_1, P_2, \dots, P_n

If, in addition, $\alpha_i \ge 0$, we have the *convex hull* of P_1, P_2, \dots, P_n

