Today's Agenda

Input and Interaction

Geometry

OpenGL Sources

OpenGL website
https://wwww.opengl.orgl

Event Types

Window: resize, expose, iconify
Mouse: click one or more buttons
Motion: move mouse
Keyboard: press or release a key
Idle: nonevent

- Define what should be done if no other event is in queue

GLUT Callbacks

GLUT recognizes a subset of the events recognized by any particular window system (Windows, X, Macintosh)

- glutDisplayFunc
- glutMouseFunc
- glutReshapeFunc
- glutKeyboardFunc
- glutIdleFunc
- glutMotionFunc,
- glutPassiveMotionFunc

These call back functions except the reshape require posting redisplays
glutPostRedisplay();

Using the Keyboard

glutKeyboardFunc (mykey)

glutKeyboardUpFunc (mykey)

void mykey(unsigned char key,int x, int y)

- Returns ASCII code of key depressed and mouse location
void mykey()
\{

$$
\begin{aligned}
& \text { if(key == ' } \left.Q^{\prime} \mid \text { key }==~ ‘ q '\right) ~ \\
& \text { exit(0); }
\end{aligned}
$$

\}

Handling Multiple Key Inputs

- For ASCII character

Each key press of will trigger the key callback function

- Use switch \& case
- Or use a buffer to store the key strokes buffer[key] = true
- For Non ASCII character
- Function keys (e.g., F1) or directional keys (e.g. \rightarrow) void glutSpecialFunc(void (*func)(int key, int x, int y));
- State modifier keys (e.g., "Shift" and "Ctrl") glutGetModifiers()

Manage Multiple Windows

- Create a second window
uint id = glutCreateWindow("second window");
- Set the window as the current window for rendering glutSetWindow(id);
- Each window can have its own call back functions

Toolkits and Widgets

Most window systems provide a toolkit or library of functions for building user interfaces that use special types of windows called widgets

Widget sets include tools such as

- Menus
- Slidebars
- Dials
- Input boxes

But toolkits tend to be platform dependent
GLUT provides a few widgets including menus

Menus

GLUT supports pop-up menus

- A menu can have submenus

Three steps

- Define entries for the menu
- Define action for each menu item
- Action carried out if entry selected
- Attach menu to a mouse button
- Register a callback function for each menu

Defining a simple menu

In main.c \quad used for parent menu
menu_id = glutCreateMenu(mymenu); glutAddmenuEntry("clear Screen", 1); gluAddMenuEntry("exit", 2); glutAttachMenu(GLUT_RIGHT_BUTTON);
clear screen
exit
entries that appear when right button depressed

Menu Actions

- Menu callback

```
void mymenu(int id)
{
    if(id == 1) glClear();
    if(id == 2) exit(0);
}
```

- Add submenus by glutAddSubMenu(char *submenu_name, submenu id) entry in parent menu

Note Menu is a deprecated feature and will not work for a core profile

Reading Assignments

Chapter 2. of Angels et al
Chapter 2\&3 Shreiner et al

Geometric Objects and Transformations

Basic Elements

Geometry is the study of the relationships among objects in an n-dimensional space

- In computer graphics, we are interested in objects that exist in three dimensions

Want a minimum set of primitives from which we can build more sophisticated objects

We will need three basic elements

- Points \leftarrow represented by uppercase letters, e.g., P, Q
- Scalars \leftarrow represented by Greek letters, e.g., α, β
- Vectors \leftarrow represented by lowercase letters, e.g., v,w

Points

- Fundamental geometric object
- Associated with location
- No size \& shape

Scalars

Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)

- Examples: the real and complex number systems

Scalars alone have no geometric properties

Vectors

Physical definition: a vector is a quantity with two attributes

- Direction
- Magnitude

Examples include

- Force
- Velocity
- Directed line segments
-Most important example for graphics
-Can map to other types

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors Lack Position

These vectors are identical

- Same length and magnitude

Vectors spaces insufficient for geometry

- Need points
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Point-Vector Addition/Subtraction

Points define locations in space
Operations allowed between points and vectors

- Point-point subtraction yields a vector
- Point-vector addition yields a new point

Coordinate-Free Geometry

When we learned simple geometry, most of us started with a Cartesian approach

- Points were at locations in space $\mathbf{p =}=(x, y, z)$

This approach was nonphysical

- Physically, points exist regardless of the location of an arbitrary coordinate system
- Most geometric results are independent of the coordinate system
-Example: two triangles are identical if two corresponding sides and the angle between them are identical

Spaces

(Linear) vector space: scalars and vectors Affine space: vector space + points

Euclidean space: vector space + distance

Vector Operations

Every vector has an inverse

- Same magnitude but points in opposite direction

Every vector can be multiplied by a scalar

There is a zero vector

- Zero magnitude, undefined orientation

The sum of any two vectors is a vector

- Use head-to-tail axiom

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Linear Vector Spaces

Mathematical system for manipulating vectors

Operations

- Scalar-vector multiplication $U=\alpha V$
- Vector-vector addition: $w=u+v$

Expressions such as

$$
v=u+2 w-3 r
$$

Make sense in a vector space

Linear Independence

A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+. . \alpha_{n} v_{n}=0 \text { iff } \alpha_{1}=\alpha_{2}=\ldots=0
$$

If a set of vectors is linearly independent, we cannot represent one in terms of the others

If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension, Basis, and Representation

Dimension of the space: the maximum number of linearly independent vectors

- Fixed for a space

In an n-dimensional space, any set of n linearly independent vectors form a basis for the space The basis for the space is not unique!

Given a basis $v_{1}, v_{2}, \ldots, v_{n}$, any vector v can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots .+\alpha_{\mathrm{n}} v_{\mathrm{n}}
$$

where the $\left\{\alpha_{i}\right\}$ are unique

Changing Representation

The same vector v can be represented differently given different bases

For a basis $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$, a vector v can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots .+\alpha_{\mathrm{n}} v_{\mathrm{n}}
$$

For a different basis $v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots, v_{\mathrm{n}}{ }^{\prime}, v$ can be written as

$$
v=\alpha_{1}{ }^{\prime} v_{1}^{\prime}+\alpha_{2}^{\prime} v_{2}^{\prime}+\ldots .+\alpha_{\mathrm{n}}^{\prime} v_{\mathrm{n}}^{\prime}
$$

Where

$$
\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\mathbf{M}\left[\begin{array}{c}
\alpha_{1}{ }^{\prime} \\
\alpha_{2}{ }^{\prime} \\
\vdots \\
\alpha_{n}{ }^{\prime}
\end{array}\right]
$$

Affine Spaces

Point + a vector space

Operations

- Vector-vector addition
- Scalar-vector multiplication
- Scalar-scalar operations
- Point-vector addition
- Point-point addition
- Scalar-Point multiplication

For any point define

- $1 \cdot \mathrm{P}=\mathrm{P}$
- $0 \cdot \mathrm{P}=\mathbf{0}$ (zero vector)

Lines and Rays

Consider all points of the form

- $\mathrm{P}(\alpha)=\mathrm{P}_{0}+\alpha \mathbf{d}$
- Set of all points that pass through P_{0} in the direction of the vector d
- If $\alpha>=0$, then $\mathrm{P}(\alpha)$ is the ray leaving P_{0} in the direction \mathbf{d}

This form is known as the parametric form of

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Line Segments

If we use two points to define \mathbf{v}, then

$$
P(\boldsymbol{\alpha})=Q+\boldsymbol{\alpha} v=Q+\boldsymbol{\alpha}(R-Q)=\boldsymbol{\alpha} R+(1-\boldsymbol{\alpha}) Q
$$

For $0 \leq \alpha \leq 1$ we get all the points on the line segment joining R and Q

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Convexity

An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

A line segment is a convex object

$$
P(\boldsymbol{\alpha})=\boldsymbol{\alpha} R+(1-\boldsymbol{\alpha}) Q=\boldsymbol{\alpha}_{R} R+\boldsymbol{\alpha}_{Q} Q
$$

Can we extend it to N points?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Sums and Convex Hull

Consider the "sum"

$$
P=\boldsymbol{\alpha}_{1} P_{1}+\boldsymbol{\alpha}_{2} P_{2}+\cdots+\boldsymbol{\alpha}_{n} P_{n}
$$

Can show by induction that this sum makes sense iff

$$
\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\cdots+\boldsymbol{\alpha}_{n}=1
$$

in which case we have the affine sum of the points $\mathbf{P}_{1}, P_{2}, \ldots . . P_{n}$
If, in addition, $\alpha_{i}>=0$, we have the convex hull of $P_{1}, P_{2}, \ldots . . P_{n}$

Smallest convex object containing $\mathbf{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$
Formed by "shrink wrapping" points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

