
Today’s Agenda

Input and Interaction

Geometry

OpenGL Sources

OpenGL website

https://www.opengl.org/

https://www.opengl.org/
https://www.opengl.org/
https://www.opengl.org/
https://www.opengl.org/

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Event Types

Window: resize, expose, iconify

Mouse: click one or more buttons

Motion: move mouse

Keyboard: press or release a key

Idle: nonevent
• Define what should be done if no other event is in queue

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

GLUT Callbacks

GLUT recognizes a subset of the events recognized by any
particular window system (Windows, X, Macintosh)

•glutDisplayFunc
•glutMouseFunc
•glutReshapeFunc
•glutKeyboardFunc
•glutIdleFunc
•glutMotionFunc,
•glutPassiveMotionFunc

These call back functions except the reshape require posting
redisplays

glutPostRedisplay();

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Using the Keyboard

glutKeyboardFunc(mykey)

glutKeyboardUpFunc(mykey)

void mykey(unsigned char key,int x, int y)
• Returns ASCII code of key depressed and mouse location

void mykey()
{
 if(key == ‘Q’ | key == ‘q’)
 exit(0);
}

Handling Multiple Key Inputs

• For ASCII character

 Each key press of will trigger the key callback function
• Use switch & case
• Or use a buffer to store the key strokes
buffer[key] = true

• For Non ASCII character
• Function keys (e.g., F1) or directional keys (e.g.)
void glutSpecialFunc(void (*func)(int key, int x, int y));

• State modifier keys (e.g., “Shift” and “Ctrl”)

 glutGetModifiers()

Manage Multiple Windows

• Create a second window

uint id = glutCreateWindow("second window");

• Set the window as the current window for rendering

glutSetWindow(id);

• Each window can have its own call back functions

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Toolkits and Widgets

Most window systems provide a toolkit or library
of functions for building user interfaces that use
special types of windows called widgets

Widget sets include tools such as
• Menus
• Slidebars
• Dials
• Input boxes

But toolkits tend to be platform dependent

GLUT provides a few widgets including menus

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Menus
GLUT supports pop-up menus

• A menu can have submenus

Three steps
• Define entries for the menu
• Define action for each menu item

– Action carried out if entry selected
• Attach menu to a mouse button
• Register a callback function for each menu

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Defining a simple menu

In main.c

 menu_id = glutCreateMenu(mymenu);
glutAddmenuEntry(“clear Screen”, 1);

gluAddMenuEntry(“exit”, 2);

glutAttachMenu(GLUT_RIGHT_BUTTON);

entries that appear when
right button depressed

identifiers

clear screen

exit

used for parent menu

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Menu Actions

• Menu callback

• Add submenus by
 glutAddSubMenu(char *submenu_name, submenu id)

void mymenu(int id)
{
 if(id == 1) glClear();
 if(id == 2) exit(0);
}

entry in parent menu

Note Menu is a deprecated feature and will not work for a core profile

Reading Assignments

Chapter 2. of Angels et al

Chapter 2&3 Shreiner et al

Geometric Objects and Transformations

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Basic Elements

Geometry is the study of the relationships among
objects in an n-dimensional space

• In computer graphics, we are interested in objects that exist in
three dimensions

Want a minimum set of primitives from which we
can build more sophisticated objects

We will need three basic elements
• Points
• Scalars
• Vectors

represented by uppercase letters, e.g., P, Q
represented by Greek letters, e.g., α,β
represented by lowercase letters, e.g., v,w

Points

• Fundamental geometric object

• Associated with location

• No size & shape

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Scalars

Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

• Examples: the real and complex number
systems

Scalars alone have no geometric properties

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors

Physical definition: a vector is a quantity with two attributes
• Direction
• Magnitude

Examples include
• Force
• Velocity
• Directed line segments

–Most important example for graphics
–Can map to other types

v

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors Lack Position

These vectors are identical
• Same length and magnitude

Vectors spaces insufficient for geometry
• Need points

Point-Vector Addition/Subtraction

Points define locations in space

Operations allowed between points and vectors
• Point-point subtraction yields a vector
• Point-vector addition yields a new point

P=v+Q

v=P-Q

Destination point

Start point

3D vectors representing points

3D vector representing
displacement

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Coordinate-Free Geometry

When we learned simple geometry, most of us
started with a Cartesian approach

• Points were at locations in space p=(x,y,z)

This approach was nonphysical
• Physically, points exist regardless of the

location of an arbitrary coordinate system
• Most geometric results are independent of the

coordinate system
–Example: two triangles are identical if two

corresponding sides and the angle between
them are identical

Spaces

(Linear) vector space: scalars and vectors

Affine space: vector space + points

Euclidean space: vector space + distance

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vector Operations

Every vector has an inverse
• Same magnitude but points in opposite direction

Every vector can be multiplied by a scalar

There is a zero vector
• Zero magnitude, undefined orientation

The sum of any two vectors is a vector
• Use head-to-tail axiom

v -v αv
v=w+u

u

w

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Linear Vector Spaces

Mathematical system for manipulating vectors

Operations

• Scalar-vector multiplication u=αv
• Vector-vector addition: w=u+v

Expressions such as
v=u+2w-3r

Make sense in a vector space

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Linear Independence

A set of vectors v1, v2, …, vn is linearly independent if

 α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0

If a set of vectors is linearly independent, we cannot represent
one in terms of the others

If a set of vectors is linearly dependent, at least one can be
written in terms of the others

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Dimension, Basis, and Representation

Dimension of the space: the maximum number of
linearly independent vectors

• Fixed for a space

In an n-dimensional space, any set of n linearly
independent vectors form a basis for the space

Given a basis v1, v2,…., vn, any vector v can be written as

 v=α1v1+ α2v2 +….+αnvn

where the {αi} are unique

The basis for the space is not unique!

Changing Representation

The same vector v can be represented differently given
different bases

For a basis v1, v2,…., vn, a vector v can be written as

 v=α1v1+ α2v2 +….+αnvn

For a different basis v1’, v2’, …., vn’, v can be written as

 v=α1’v1’+ α2’v2’ +….+αn’vn’

Where
𝛼1
𝛼2
⋮
𝛼𝑛

= M

𝛼1′
𝛼2′
⋮
𝛼𝑛′

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Spaces

Point + a vector space

Operations
• Vector-vector addition
• Scalar-vector multiplication
• Scalar-scalar operations
• Point-vector addition
• Point-point addition
• Scalar-Point multiplication

For any point define
• 1 • P = P
• 0 • P = 0 (zero vector)

Affine sum

Consider all points of the form
• P(α)=P0 + α d
• Set of all points that pass through P0 in the direction of the

vector d
• If α >= 0, then P(α) is the ray leaving P0 in the direction d

This form is known as the parametric form of the line
• More robust and general than other forms
• Extends to curves and surfaces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Lines and Rays

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Line Segments

If we use two points to define v, then
𝑃(𝜶) = 𝑄 + 𝜶𝑣 = 𝑄 + 𝜶 (𝑅 − 𝑄) = 𝜶𝑅 + (1 − 𝜶)𝑄

For 0 ≤ 𝜶 ≤ 1 we get all the points on the line segment

joining R and Q

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Convexity

An object is convex iff for any two points in the object all
points on the line segment between these points are also in
the object

A line segment is a convex object

Can we extend it to N points?

 P

Q
Q

P

convex not convex

𝑃 𝜶 = 𝜶𝑅 + 1 − 𝜶 𝑄 = 𝜶𝑅𝑅 + 𝜶𝑄𝑄

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Affine Sums and Convex Hull

Consider the “sum”
𝑃 = 𝜶1𝑃1 + 𝜶2𝑃2 + ⋯+ 𝜶𝑛𝑃𝑛

Can show by induction that this sum makes sense iff
𝜶1 + 𝜶2 + ⋯+ 𝜶𝑛 = 1

in which case we have the affine sum of the points P1,P2,…..Pn

If, in addition, αi>=0, we have the convex hull of P1,P2,…..Pn

Smallest convex object containing P1,P2,…..Pn

Formed by “shrink wrapping” points

	Today’s Agenda
	OpenGL Sources
	Event Types
	GLUT Callbacks
	Using the Keyboard
	Handling Multiple Key Inputs
	Manage Multiple Windows
	Toolkits and Widgets
	Menus
	Defining a simple menu
	Menu Actions
	Reading Assignments
	Geometric Objects and Transformations
	Basic Elements
	Points
	Scalars
	Vectors
	Vectors Lack Position
	Point-Vector Addition/Subtraction
	Coordinate-Free Geometry
	Spaces
	Vector Operations
	Linear Vector Spaces
	Linear Independence
	Dimension, Basis, and Representation
	Changing Representation
	Affine Spaces
	Lines and Rays
	Line Segments
	Convexity
	Affine Sums and Convex Hull

