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Input and Interaction 

Geometry 

 



OpenGL Sources 

OpenGL website 

https://www.opengl.org/ 
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Event Types 

Window: resize, expose, iconify 

Mouse: click one or more buttons 

Motion: move mouse 

Keyboard: press or release a key 

Idle: nonevent 
• Define what should be done if no other event is in queue 
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GLUT Callbacks 

GLUT recognizes a subset of the events recognized by any 
particular window system (Windows, X, Macintosh) 

•glutDisplayFunc 
•glutMouseFunc 
•glutReshapeFunc 
•glutKeyboardFunc 
•glutIdleFunc 
•glutMotionFunc,  
•glutPassiveMotionFunc 

These call back functions except the reshape require posting 
redisplays  

glutPostRedisplay(); 
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Using the Keyboard 

glutKeyboardFunc(mykey) 

glutKeyboardUpFunc(mykey) 

void mykey(unsigned char key,int x, int y) 
• Returns ASCII code of key depressed and mouse location 

void mykey() 
{ 
 if(key == ‘Q’ | key == ‘q’)  
  exit(0); 
} 



Handling Multiple Key Inputs 

• For ASCII character  

     Each key press of will trigger the key callback function 
• Use switch & case 
• Or use a buffer to store the key strokes 
buffer[key] = true 

• For Non ASCII character 
• Function keys (e.g., F1) or directional keys (e.g. ) 
void glutSpecialFunc(void (*func)(int key, int x, int y));  

 
• State modifier keys (e.g., “Shift” and “Ctrl”)

 glutGetModifiers() 

 

 



Manage Multiple Windows 

• Create a second window 

uint id = glutCreateWindow("second window"); 

• Set the window as the current window for rendering 

glutSetWindow(id); 

• Each window can have its own call back functions  
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Toolkits and Widgets 

Most window systems provide a toolkit or library 
of functions for building user interfaces that use 
special types of windows called widgets 

Widget sets include tools such as 
• Menus 
• Slidebars 
• Dials 
• Input boxes 

But toolkits tend to be platform dependent 

GLUT provides a few widgets including menus 
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Menus 
GLUT supports pop-up menus 

• A menu can have submenus 

Three steps 
• Define entries for the menu 
• Define action for each menu item 

– Action carried out if entry selected 
• Attach menu to a mouse button 
• Register a callback function for each menu 
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Defining a simple menu 

In main.c 

 menu_id = glutCreateMenu(mymenu); 
glutAddmenuEntry(“clear Screen”, 1); 
 
gluAddMenuEntry(“exit”, 2); 
 
glutAttachMenu(GLUT_RIGHT_BUTTON); 

entries that appear when 
right button depressed 

identifiers 

clear screen 

exit 

used for parent menu 
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Menu Actions 

• Menu callback 
 
 
 
 

 
• Add submenus by 
 glutAddSubMenu(char *submenu_name, submenu id) 

void mymenu(int id) 
{ 
 if(id == 1) glClear(); 
 if(id == 2) exit(0); 
} 

entry in parent menu 

Note Menu is a deprecated feature and will not work for a core profile 



Reading Assignments 

Chapter 2. of Angels et al 

Chapter 2&3 Shreiner et al 



Geometric Objects and Transformations 
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Basic Elements 

Geometry is the study of the relationships among 
objects in an n-dimensional space 

• In computer graphics, we are interested in objects that exist in 
three dimensions 

Want a minimum set of primitives from which we 
can build more sophisticated objects 

We will need three basic elements 
• Points    
• Scalars 
• Vectors 

represented by uppercase letters, e.g., P, Q 
represented by Greek letters, e.g., α,β 
represented by lowercase letters, e.g., v,w 



Points 

• Fundamental geometric object 

• Associated with location 

• No size & shape 
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Scalars 

Scalars can be defined as members of sets which 
can be combined by two operations (addition and 
multiplication) obeying some fundamental axioms 
(associativity, commutivity, inverses) 

• Examples: the real and complex number 
systems  

Scalars alone have no geometric properties 
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Vectors 

Physical definition: a vector is a quantity with two attributes 
• Direction 
• Magnitude 

Examples include 
• Force 
• Velocity 
• Directed line segments 

–Most important example for graphics 
–Can map to other types 

v 
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Vectors Lack Position 

These vectors are identical 
• Same length and magnitude 

 
 
 
 
 
 
 

Vectors spaces insufficient for geometry 
• Need points 



Point-Vector Addition/Subtraction 

Points define locations in space 

Operations allowed between points and vectors 
• Point-point subtraction yields a vector 
• Point-vector addition yields a new point 

P=v+Q 

v=P-Q 

Destination point 

Start point 

3D vectors representing points 

3D vector representing 
displacement  
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Coordinate-Free Geometry 

When we learned simple geometry, most of us 
started with a Cartesian approach 

• Points were at locations in space p=(x,y,z) 

This approach was nonphysical 
• Physically, points exist regardless of the 

location of an arbitrary coordinate system 
• Most geometric results are independent of the 

coordinate system 
–Example: two triangles are identical if two 

corresponding sides and the angle between 
them are identical 



Spaces 

(Linear) vector space: scalars and vectors 

Affine space: vector space + points 

Euclidean space: vector space + distance 
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Vector Operations  

Every vector has an inverse 
• Same magnitude but points in opposite direction 

Every vector can be multiplied by a scalar 

There is a zero vector 
• Zero magnitude, undefined orientation 

The sum of any two vectors is a vector 
• Use head-to-tail axiom 

v -v αv 
v=w+u 

u 

w 
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Linear Vector Spaces 

Mathematical system for manipulating vectors 

Operations 

• Scalar-vector multiplication u=αv 
• Vector-vector addition: w=u+v 

Expressions such as  
v=u+2w-3r 

Make sense in a vector space 
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Linear Independence 

A set of vectors v1, v2, …, vn is linearly independent if  

        α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0 

If a set of vectors is linearly independent, we cannot represent 
one in terms of the others  

If a set of vectors is linearly dependent, at least one can be 
written in terms of the others 
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Dimension, Basis, and Representation 

Dimension of the space: the maximum number of 
linearly independent vectors 

• Fixed for a space 

In an n-dimensional space, any set of n linearly 
independent vectors form a basis for the space 

 

Given a basis v1, v2,…., vn, any vector v can be written as 

      v=α1v1+ α2v2 +….+αnvn 

where the {αi} are unique 

The basis for the space is not unique! 



Changing Representation 

The same vector v can be represented differently given 
different bases 

For a basis v1, v2,…., vn, a vector v can be written as 

      v=α1v1+ α2v2 +….+αnvn 

 

For a different basis v1’, v2’, …., vn’, v can be written as 

      v=α1’v1’+ α2’v2’ +….+αn’vn’ 

 

Where  
𝛼1
𝛼2
⋮
𝛼𝑛

= M

𝛼1′
𝛼2′
⋮
𝛼𝑛′
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Affine Spaces 

Point + a vector space 

Operations 
• Vector-vector addition 
• Scalar-vector multiplication 
• Scalar-scalar operations 
• Point-vector addition 
• Point-point addition 
• Scalar-Point multiplication 

For any point define 
• 1 • P = P 
• 0 • P = 0 (zero vector) 

Affine sum 



Consider all points of the form 
• P(α)=P0 + α d 
• Set of all points that pass through P0 in the direction of the 

vector d 
• If α >= 0, then P(α) is the ray leaving P0 in the direction d 
 

This form is known as the parametric form of the line 
• More robust and general than other forms 
• Extends to curves and surfaces 
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Lines and Rays 
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Line Segments 

If we use two points to define v, then 
𝑃( 𝜶)  =  𝑄 + 𝜶𝑣 = 𝑄 +  𝜶 (𝑅 − 𝑄) = 𝜶𝑅 +  (1 − 𝜶)𝑄 

For 0 ≤ 𝜶 ≤ 1 we get all the points on the line segment 

joining R and Q 
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Convexity 

An object is convex iff for any two points in the object all 
points on the line segment between these points are also in 
the object 

A line segment is a convex object 

 

Can we extend it to N points? 

 P 

Q 
Q 

P 

convex not convex 

𝑃 𝜶 = 𝜶𝑅 +  1 − 𝜶 𝑄 = 𝜶𝑅𝑅 + 𝜶𝑄𝑄 
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Affine Sums and Convex Hull 

Consider the “sum” 
𝑃 = 𝜶1𝑃1 + 𝜶2𝑃2 + ⋯+ 𝜶𝑛𝑃𝑛 

Can show by induction that this sum makes sense iff 
𝜶1 + 𝜶2 + ⋯+ 𝜶𝑛 = 1 

in which case we have the affine sum of the points P1,P2,…..Pn 

If, in addition, αi>=0, we have the convex hull of P1,P2,…..Pn 
 

 

Smallest convex object containing P1,P2,…..Pn 

Formed by “shrink wrapping” points 
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