
Today’s Agenda

Programming with shader-based OpenGL: From 2D to 3D

Input and Interaction

Sierpinski Gasket

A fractal object defined recursively and randomly

1. Pick an initial point p0 randomly inside the triangle
2. Select one of the vertices randomly
3. Find a point p1 at the middle of the line segment

v1p0
4. Replace p0 with p1
5. Go back to step 2.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Sierpinski Gasket – Isolated Points

#include <GL/glut.h>
/* initial triangle */
vec2 vertices[3] ={vec2(-1.0, -0.58), vec2(1.0, -0.58),
 vec2(0.0, 1.15)};

// compute and store N-1 new points
 for (int i = 1; i < NumPoints; ++i) {
 int j = rand() % 3; // pick a vertex at random

 // Compute the point halfway between the selected vertex
 // and the previous point
 points[i] = (points[i - 1] + vertices[j]) / 2.0;
 }

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT); // clear the window
 glDrawArrays(GL_POINTS, 0, NumPoints);// drawpoints
 glFlush();
}

Sierpinski Gasket – Polygons

Start from a single triangle

Subdivide it into 4 smaller ones by
bisecting the sides and remove the
central one

Repeat
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Sierpinski Gasket – Polygons

#include <GL/glut.h>

/* initial triangle */

vec2 v[3] ={point2(-1.0, -0.58),
 point2(1.0, -0.58),
 point2 (0.0, 1.15)};

int n; /* number of recursive steps */

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Draw one triangle
void triangle(vec2 a, vec2 b, vec2 c)

/* display one triangle */
{
 static int i =0;

 points[i] = a;
 points[i] = b;
 points[i] = c;
 i += 3;
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Triangle Subdivision
void divide_triangle(vec2 a, vec2 b, vec2 c, int m)
{
/* triangle subdivision using vertex numbers */
 point2 ab, ac, bc;
 if(m>0)
 {
 ab = (a + b)/2;
 ac = (a + c)/2;
 bc = (b + c)/2;
 divide_triangle(a, ab, ac, m-1);
 divide_triangle(c, ac, bc, m-1);
 divide_triangle(b, bc, ac, m-1);
 }
 else(triangle(a,b,c));
 /* draw triangle at end of recursion */
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

display and init Functions
void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);
 glFlush();
}

void myinit()
{
 vec2 v[3] = {point2(……
 .
 .
 divide_triangles(v[0], v[1], v[2], n);
 .
 .
 glBufferData(GL_ARRAY_BUFFER,sizeof(points),
points, GL_STATIC_DRAW);
 .
 .
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

main Function
int main(int argc, char **argv)
{
 n=4;
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500, 500);
 glutCreateWindow(“2D Gasket");
 glutDisplayFunc(display);

 myinit();
 glutMainLoop();
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Moving to 3D

We can easily make the program three-dimensional by using

 vec3 v[3]

and we start with a tetrahedron (a polyhedron with 4 vertices,
6 straight edges, and 4 triangle faces)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

3D Gasket

We can subdivide each of the four faces

Appears as if we remove a solid tetrahedron from the center
leaving four smaller tetrahedra

Code almost identical to 2D example

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Almost Correct

Because the triangles are drawn in the order they are
generated/specified in the program, the front triangles
are not always rendered in front of triangles behind
them

get this

want this

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hidden-Surface Removal

We want to see only those surfaces in front of
other surfaces

OpenGL uses a hidden-surface method called
the z-buffer algorithm that saves depth
information as objects are rendered so that
only the front objects appear in the image

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the z-buffer algorithm

The algorithm uses an extra buffer, the z-buffer, to
store depth information as geometry travels down
the pipeline

It must be
• Requested in main.c
–glutInitDisplayMode
 (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

• Enabled in init.c
–glEnable(GL_DEPTH_TEST)

• Cleared in the display callback
–glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the z-buffer algorithm

Input and Interaction

Introduce the basic input devices

Event-driven input

Programming event input with GLUT

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Graphical Input

Devices can be described either by
• Physical properties

– Mouse
– Keyboard
– Trackball

• Logical Properties
– What is returned to program via API

• A position
• An object identifier

Modes
• How and when input is obtained

– Request mode
– Event mode

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Physical Devices

mouse trackball light pen

data tablet joy stick space ball

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Input Modes

Input devices contain a trigger which can be used to send a
signal to the operating system

• Button on mouse
• Pressing or releasing a key

When triggered, input devices return information (their
measure) to the system

• Mouse returns position information
• Keyboard returns ASCII code

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Request Mode

Input provided to program only when user triggers the device

The application and input process cannot work at the same
time

Typical of keyboard input
• Can erase (backspace), edit, correct until enter (return) key

(the trigger) is depressed

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Event Mode

Most systems have more than one input device, each of which
can be triggered at an arbitrary time by a user

Each trigger generates an event whose measure is put in an
event queue which can be examined by the user program

23 E. Angel and D. Shreiner : Interactive
Computer Graphics 6E © Addison

Event Types

Window: resize, expose, iconify

Mouse: click one or more buttons

Motion: move mouse

Keyboard: press or release a key

Idle: nonevent
• Define what should be done if no other event is in queue

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Callback Functions

Programming interface for event-driven input

Define a callback function for each type of event the graphics
system recognizes

This user-supplied function is executed when the event occurs

GLUT example: glutMouseFunc(mymouse)

mouse callback function

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-
Wesley 2012

GLUT callbacks

GLUT recognizes a subset of the events recognized by any
particular window system (Windows, X, Macintosh)

•glutDisplayFunc
•glutMouseFunc
•glutReshapeFunc
•glutKeyboardFunc
•glutIdleFunc
•glutMotionFunc,
•glutPassiveMotionFunc

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

GLUT Event Loop

Recall that the last line in main.c for a program
using GLUT must be

glutMainLoop();

which puts the program in an infinite event loop

In each pass through the event loop, GLUT
• looks at the events in the queue
• for each event in the queue, GLUT executes the

appropriate callback function if one is defined
• if no callback is defined for the event, the event is

ignored

Interactive Programs

Learn to build interactive programs using GLUT callbacks
• Mouse
• Keyboard
• Reshape

Introduce menus in GLUT

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Mouse Event

• Move event happens when the mouse is moved with one or more
buttons pressed

• Passive move event happens when the mouse is moved with no button
pressed

• Mouse event happens when one of the buttons is
• Depressed – Mouse down event
• Released – mouse up event

Information includes
• which button triggers the event
–GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON

• The state of the button after the event (GLUT_UP, GLUT_DOWN)
• The position in window coordinates

Mouse Event

Register the mouse callback function in main()
• Mouse move event: glutMotionFunc(myMouseMotion);

– Defined as
void myMouseMotion(int x, int y);

• Passive mouse move event:
glutPassiveMotionFunc(myMousePMotion)
– Defined as
void myMousePMotion(int x, int y);

• Mouse event: glutMouseFunc(myMouse);

– Defined as
void myMouse (int button, int state, int x, int y);

Coordinate Mapping

w

h

window

OpenGL 𝑝𝑤(𝑥𝑤 ,𝑦𝑤)

𝑝𝑜(𝑥𝑜,𝑦𝑜)

𝑥𝑜 =
𝑥𝑤

0.5𝑤 − 1

𝑦𝑜 = 1 −
𝑦𝑤

0.5ℎ

𝟎,𝟎 𝟎,𝟎

How to get the values of w and h?
Using query functions
w= glutGet(GLUT_WINDOW_WIDTH);
h=glutGet(GLUT_WINDOW_HEIGHT);

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Example: Terminating a program

In our original programs, there was no way to terminate them
through OpenGL

We can use the simple mouse callback

void mouse(int btn, int state, int x, int y)
{
 if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
 exit(0);
}

Example: Mouse Event

int w, h;
int count = 0;
void myMouse (int button, int state, int x, int y)
{
 if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
 {
 exit(0);
 }
 if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
 {
 vertices[count].x = (float) x / (w/2) - 1.0;
 vertices[count].y = (float) (h-y) / (h/2) - 1.0;
 count++;
 }
 if(count == 3)
 {
 glutPostRedisplay();
 count = 0;
 }
}

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Display Callback

The display callback is executed whenever GLUT
determines that the window should be refreshed, for
example

• When the window is first opened
• When the window is reshaped
• When a window is exposed
• When the user program decides it wants to change the

display

In main.c
•glutDisplayFunc(mydisplay) identifies the

function to be executed
• Every GLUT program must have a display callback

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Posting Redisplays

Many events may invoke the display callback function
• Can lead to multiple executions of the display callback on a

single pass through the event loop

We can avoid this problem by instead using
glutPostRedisplay();

which sets a flag.

GLUT checks to see if the flag is set at the end of the
event loop

If set then the display callback function is executed

An Example: Draw a Triangle Using Mouse

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBindVertexArray(VAOs[Triangles]);

 glDrawArrays(GL_TRIANGLES, 0, NumVertices);

 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),

 vertices, GL_STATIC_DRAW);

 glFlush();

}
What did we miss?

Idle Callback

When no events are pending, use an idle callback function

void glutIdleFunc(void (*func)(void));

• Null or an idle function

• Background process

• Continuous animation

void idle()

{

glutPostRedisplay();

}

	Today’s Agenda
	Sierpinski Gasket
	Sierpinski Gasket – Isolated Points
	Sierpinski Gasket – Polygons
	Sierpinski Gasket – Polygons
	Draw one triangle
	Triangle Subdivision
	display and init Functions
	main Function
	Moving to 3D
	3D Gasket
	Almost Correct
	Hidden-Surface Removal
	Using the z-buffer algorithm
	Using the z-buffer algorithm
	Input and Interaction
	Graphical Input
	Physical Devices
	Input Modes
	Request Mode
	Event Mode
	Event Types
	Callback Functions
	GLUT callbacks
	GLUT Event Loop
	Interactive Programs
	Mouse Event
	Mouse Event
	Coordinate Mapping
	Example: Terminating a program
	Example: Mouse Event
	Display Callback
	Posting Redisplays
	An Example: Draw a Triangle Using Mouse
	Idle Callback
	Slide Number 49

