
Today’s Agenda 

Programming with shader-based OpenGL: From 2D to 3D  

Input and Interaction 

 

 



Sierpinski Gasket 

A fractal object defined recursively and randomly 

1. Pick an initial point p0 randomly inside the triangle 
2. Select one of the vertices randomly 
3. Find a point p1 at the middle of the line segment 

v1p0 
4. Replace p0 with p1 
5. Go back to step 2. 
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Sierpinski Gasket – Isolated Points 

#include <GL/glut.h> 
/* initial triangle */ 
vec2 vertices[3] ={vec2(-1.0, -0.58), vec2(1.0, -0.58),  
 vec2(0.0, 1.15)}; 
  
// compute and store N-1 new points 
    for ( int i = 1; i < NumPoints; ++i ) { 
        int j = rand() % 3;   // pick a vertex at random 
 
        // Compute the point halfway between the selected vertex 
        //   and the previous point 
        points[i] = ( points[i - 1] + vertices[j] ) / 2.0; 
    } 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

void display( void ) 
{ 
    glClear( GL_COLOR_BUFFER_BIT ); // clear the window 
    glDrawArrays( GL_POINTS, 0, NumPoints );// drawpoints 
    glFlush(); 
} 



Sierpinski Gasket – Polygons 

Start from a single triangle 

 

 

 

Subdivide it into 4 smaller ones by 
bisecting the sides and remove the 
central one 

 

 

 

Repeat  
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Sierpinski Gasket – Polygons 

#include <GL/glut.h> 
 
/* initial triangle */ 
 
vec2 v[3] ={point2(-1.0, -0.58),  
           point2(1.0, -0.58),  
           point2 (0.0, 1.15)}; 
 
int n; /* number of recursive steps */ 
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Draw one triangle 
void triangle( vec2 a, vec2 b, vec2 c) 
 
/* display one triangle  */ 
{ 
      static int i =0; 
 
      points[i] = a;  
      points[i] = b;   
      points[i] = c; 
      i += 3; 
} 
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Triangle Subdivision 
void divide_triangle(vec2 a, vec2 b, vec2 c, int m) 
{ 
/* triangle subdivision using vertex numbers */ 
    point2 ab, ac, bc; 
    if(m>0) 
    { 
        ab = (a + b )/2; 
        ac = (a + c)/2; 
        bc = (b + c)/2; 
        divide_triangle(a, ab, ac, m-1); 
        divide_triangle(c, ac, bc, m-1); 
        divide_triangle(b, bc, ac, m-1); 
    } 
    else(triangle(a,b,c)); 
 /* draw triangle at end of recursion */ 
} 
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display and init Functions 
void display() 
{ 
    glClear(GL_COLOR_BUFFER_BIT); 
    glDrawArrays(GL_TRIANGLES, 0, NumVertices); 
    glFlush(); 
} 
 
void myinit() 
{ 
    vec2 v[3] = {point2(…… 
    . 
    . 
    divide_triangles(v[0], v[1], v[2], n); 
    . 
    . 
    glBufferData( GL_ARRAY_BUFFER,sizeof(points), 
points, GL_STATIC_DRAW ); 
    . 
    . 
} 
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main Function 
int main(int argc, char **argv) 
{ 
   n=4; 
   glutInit(&argc, argv); 
   glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); 
   glutInitWindowSize(500, 500); 
   glutCreateWindow(“2D Gasket"); 
   glutDisplayFunc(display); 
    
   myinit(); 
   glutMainLoop(); 
} 
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Moving to 3D 

We can easily make the program three-dimensional by using  

  vec3 v[3] 

and we start with a tetrahedron (a polyhedron with 4 vertices, 
6 straight edges, and 4 triangle faces) 
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3D Gasket 

We can subdivide each of the four faces 

 

 

 

 

Appears as if we remove a solid tetrahedron from the center 
leaving four smaller tetrahedra 

Code almost identical to 2D example 
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Almost Correct 

Because the triangles are drawn in the order they are 
generated/specified in the program, the front triangles 
are not always rendered in front of triangles behind 
them 

get this 

want this 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Hidden-Surface Removal 

We want to see only those surfaces in front of 
other surfaces 

OpenGL uses a hidden-surface method called 
the z-buffer algorithm that saves depth 
information as objects are rendered so that 
only the front objects appear in the image 
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Using the z-buffer algorithm 

The algorithm uses an extra buffer, the z-buffer, to 
store depth information as geometry travels down 
the pipeline 

It must be 
• Requested in main.c  
–glutInitDisplayMode 
  (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH) 

• Enabled in init.c   
–glEnable(GL_DEPTH_TEST) 

• Cleared in the display callback 
–glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT) 
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Using the z-buffer algorithm 



Input and Interaction 

Introduce the basic input devices 

Event-driven input 

Programming event input with GLUT 
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Graphical Input 

Devices can be described either by 
• Physical properties 

– Mouse 
– Keyboard 
– Trackball 

• Logical Properties 
– What is returned to program via API 

• A position 
• An object identifier 

Modes 
• How and when input is obtained 

– Request mode 
– Event mode 
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Physical Devices 

mouse trackball light pen 

data tablet joy stick space ball 
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Input Modes 

Input devices contain a trigger which can be used to send a 
signal to the operating system 

• Button on mouse 
• Pressing or releasing a key 

When triggered, input devices return information (their 
measure) to the system 

• Mouse returns position information 
• Keyboard returns ASCII code 
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Request Mode 

Input provided to program only when user triggers the device 

The application and input process cannot work at the same 
time 

Typical of keyboard input 
• Can erase (backspace), edit, correct until enter (return) key 

(the trigger) is depressed 
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Event Mode 

Most systems have more than one input device, each of which 
can be triggered at an arbitrary time by a user 

Each trigger generates an event whose measure is put in an 
event queue which can be examined by the user program 
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Event Types 

Window: resize, expose, iconify 

Mouse: click one or more buttons 

Motion: move mouse 

Keyboard: press or release a key 

Idle: nonevent 
• Define what should be done if no other event is in queue 
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Callback Functions 

Programming interface for event-driven input 

Define a callback function for each type of event the graphics 
system recognizes 

This user-supplied function is executed when the event occurs 

GLUT example: glutMouseFunc(mymouse) 

mouse callback function 
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GLUT callbacks 

GLUT recognizes a subset of the events recognized by any 
particular window system (Windows, X, Macintosh) 

•glutDisplayFunc 
•glutMouseFunc 
•glutReshapeFunc 
•glutKeyboardFunc 
•glutIdleFunc 
•glutMotionFunc,  
•glutPassiveMotionFunc 
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GLUT Event Loop 

Recall that the last line in main.c for a program 
using GLUT must be 

glutMainLoop(); 

which puts the program in an infinite event loop 

In each pass through the event loop, GLUT  
• looks at the events in the queue 
• for each event in the queue, GLUT executes the 

appropriate callback function if one is defined 
• if no callback is defined for the event, the event is 

ignored 



Interactive Programs 

Learn to build interactive programs using GLUT callbacks 
• Mouse 
• Keyboard 
• Reshape 

Introduce menus in GLUT 
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Mouse Event 

• Move event happens when the mouse is moved with one or more 
buttons pressed 

• Passive move event happens when the mouse is moved with no button 
pressed 

• Mouse event happens when one of the buttons is 
• Depressed – Mouse down event  
• Released – mouse up event  

Information includes 
• which button triggers the event 
–GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON 

• The state of the button after the event (GLUT_UP, GLUT_DOWN) 
• The position in window coordinates 



Mouse Event 

Register the mouse callback function in main() 
• Mouse move event: glutMotionFunc(myMouseMotion); 

– Defined as 
void myMouseMotion(int x, int y); 

• Passive mouse move event: 
glutPassiveMotionFunc(myMousePMotion) 
– Defined as 
void myMousePMotion(int x, int y); 

 
• Mouse event: glutMouseFunc(myMouse); 

– Defined as 
void myMouse (int button, int state, int x, int y); 

 



Coordinate Mapping 

w 

h 

window 

OpenGL 𝑝𝑤(𝑥𝑤 ,𝑦𝑤) 

𝑝𝑜(𝑥𝑜,𝑦𝑜) 

𝑥𝑜 =
𝑥𝑤

0.5𝑤 − 1 

𝑦𝑜 = 1 −
𝑦𝑤

0.5ℎ 

𝟎,𝟎  𝟎,𝟎  

How to get the values of w and h? 
Using query functions 
w= glutGet(GLUT_WINDOW_WIDTH); 
h=glutGet(GLUT_WINDOW_HEIGHT); 
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Example: Terminating a program 

In our original programs, there was no way to terminate them 
through OpenGL 

We can use the simple mouse callback 

void mouse(int btn, int state, int x, int y) 
{ 
   if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN) 
    exit(0); 
} 



Example: Mouse Event 

int w, h; 
int count = 0; 
void myMouse (int button, int state, int x, int y) 
{ 
   if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) 
   { 
       exit(0); 
    } 
   if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) 
   { 
       vertices[count].x = (float) x / (w/2) - 1.0; 
       vertices[count].y = (float) (h-y) / (h/2) - 1.0; 
       count++; 
   } 
   if(count == 3) 
   { 
       glutPostRedisplay(); 
       count = 0; 
    } 
} 
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Display Callback 

The display callback is executed whenever GLUT 
determines that the window should be refreshed, for 
example 

• When the window is first opened 
• When the window is reshaped 
• When a window is exposed 
• When the user program decides it wants to change the 

display 

In main.c 
•glutDisplayFunc(mydisplay) identifies the 

function to be executed 
• Every GLUT program must have a display callback 



E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012 

Posting Redisplays 

Many events may invoke the display callback function 
• Can lead to multiple executions of the display callback on a 

single pass through the event loop 

We can avoid this problem by instead using 
glutPostRedisplay(); 

which sets a flag.  

GLUT checks to see if the flag is set at the end of the 
event loop 

If set then the display callback function is executed 



An Example: Draw a Triangle Using Mouse 

void display(void) 

{ 

    glClear(GL_COLOR_BUFFER_BIT); 

    glBindVertexArray(VAOs[Triangles]); 

    glDrawArrays(GL_TRIANGLES, 0, NumVertices); 

 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), 

                 vertices, GL_STATIC_DRAW); 

    glFlush(); 

} 
What did we miss? 



Idle Callback 

When no events are pending, use an idle callback function 

void glutIdleFunc(void (*func)(void)); 

• Null or an idle function 

• Background process 

• Continuous animation 

void idle() 

{ 

glutPostRedisplay(); 

} 
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