
Today’s Agenda 

Basic design of a graphics system 

Introduction to OpenGL 

 

 



Image Compositing 

Compositing one image over another is most common choice 
• can think of each image drawn on a transparent plastic sheet 
• the final image is formed by stacking layers together 

Given images A & B, we can compute C = A over B 
 
 

• if we pre-multiply α values, this simplifies to 
 

 
Aα

Bα

𝐶𝑟𝑟𝑟 = 𝛼 𝐴𝐴𝑟𝑟𝑟 + (1 − 𝛼 𝐴)𝛼 𝐵𝐵𝑟𝑟𝑟 

𝐶𝐶 = 𝐴𝐴 + (1 − 𝛼𝐴)𝐵𝐵 



Image Formation 

Elements of image formation: 
• Illumination sources 
• Objects 
• Viewer (e.g., camera and eye) 
• Attributes of materials 

How can we design graphics hardware and software to mimic 
the image formation process? 



Practical Approach 

Process objects one at a time in the order they are generated 
by the application 

Pipeline architecture 

 

 

 

All steps can be implemented in hardware on the graphics 
card 
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Vertex Processing 

Geometrical transformation: 
• Convert object representations from one coordinate 

system to another 
– World (local) coordinate system built on each object 
– Camera (eye) coordinate system 
– Screen/image coordinate system 

• Changing coordinates is computed by matrix-vector 
multiplication  

Color transformations: Vertex processor also 
computes vertex colors 

• E.g., filtering 
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Vertex Processing Example: Perspective 
Projection Geometry 
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How a 3D point measured in world coordinate system produce an 
image point measured in the image plane/coordinate system?  

world coordinate system 



How to Project a 3D Point in Camera Coordinate 
System to a 2D Point in Row-Column Image Frame 
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Primitive Assembly 

Vertices must be collected into geometric objects before 
clipping and rasterization 

• Line segments 
• Polygons 
• Curves and surfaces 
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Clipping 

The virtual camera can only see part of the world or object 
space according to the field of view (angle of view) 

• Objects that are not within this volume are said to be clipped 
out of the scene 
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Rasterization 

Vertices  Pixels 

For the objects in the clipping volume, the pixels in the 
frame buffer must be assigned colors 

Rasterizer produces a set of fragments for each object 

Fragments are “potential pixels” 
• Have a location in frame buffer 
• Color and depth attributes 
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Fragment Processing 

Fragments are processed to determine the color of the 
corresponding pixel in the frame buffer 

Colors can be determined by texture mapping or interpolation 
of vertex colors 
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The Programmer’s Interface 

Programmer sees the graphics system through a software 
interface: the Application Programmer Interface (API) 
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API Contents 

Functions that specify what we need to form an image 
• Objects 
• Viewer 
• Light Source(s) 
• Materials 

Other information 
• Input from devices such as mouse and keyboard 
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Object Specification 

Most APIs support a limited set of primitives including 
• Points (0D object) 
• Line segments (1D objects) 
• Polygons (2D objects) 
• Some curves and surfaces 

–Quadrics 
–Parametric polynomials 

All are defined through locations in space or vertices 



Introduction to OpenGL 

OpenGL is an Application Programmer Interface (API) and a 
standard graphics library for 2-D & 3-D drawing 

• maps fairly directly to graphics hardware 
• doesn’t address windows or input events (we’ll use GLUT) 
• platform-independent  
• a free software implementation (www.mesa3d.org) 

OpenGL 3.1 Totally shader-based 
• Each application must provide both a vertex and a fragment 

shader 

OpenGL 4.1 and 4.2 
• Add geometry shaders and tessellator 

 

http://www.mesa3d.org/


OpenGL Libraries 

OpenGL core library 
• OpenGL on Windows 
• GL on most unix/linux systems (libGL.a) 

Available when you install the graphics driver 

Examples: OpenGL library calls 
• glBegin() 
• glEnd() 
• glVertex() 
• glColor() 
• glClear() 
• glDrawPixels() 
• glLight()  and more… 

 



OpenGL Libraries 

OpenGL Utility Library (GLU) 
• Provides functionality in OpenGL core,  

Examples: GLU library calls 
• gluBeginSurface() 
• gluEndSurface() 
• gluSphere() 
• gluCylinder() 
• gluOrtho2D() 
• gluPerspective() 
• gluLookAt()  and more… 

 



OpenGL Libraries 

OpenGL Utility Toolkit (GLUT/FreeGLUT) 
• Provides functionality for all window systems  

– creating windows,  
– receiving inputs,  
– handling events, etc. 

• Some functionality can’t work since it requires deprecated functions 
• FreeGLUT contains the latest developments 

Examples: GLUT library calls 
• glutCreateWindow() 
• glutInit() 
• glutDisplayFunc() 
• glutMouseFunc() 
• glutKeyboardFunc() 
• glutMainLoop() and more… 
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OpenGL Extension Libraries 

Links with window system 
• GLX for X window systems 
• WGL for Windows 
• AGL for Macintosh 

OpenGL Extension Wrangler Library (GLEW) 

http://glew.sourceforge.net/  

• Need to be initialized after creating windows 

• Verify OpenGL extensions on a specific platform 

• Deal with function pointers 

 

 

http://glew.sourceforge.net/
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Software Organization 
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OpenGL Functions 

Primitives – low level objects that can be displayed 
• Points, line Segments, and triangles 

Attributes  - how objects are displayed 
• Color, pattern, etc. 

Transformations  
• Viewing 
• Modeling 

Control (GLUT)  
• Initialization, windows, etc. 

Input (GLUT) 

Query 
• Timer, occlusion, primitives, etc. 
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OpenGL State 

OpenGL is a state machine 

OpenGL functions are of two types 
• Primitive generating  

– Very few 
– Can cause output if primitive is visible 
– How vertices are processed and appearance of primitive are 

controlled by the state 
• State changing  

– Transformation functions 
– Attribute functions 
– Under 3.1 most state variables are defined by the application 

and sent to the shaders 



Extensive State Information 

Always a “current” state, initialized with default values 
• changes to the state apply to all subsequent operations 

 

 

 

 

Examples of state information include 
• current drawing color, line width, point size, … 
• coordinate system (defined by transformation matrix) 
• enabled features: depth tests, alpha blending, lighting, … 

 

set_color(Red); 
draw_triangle(t1); // red 
draw_triangle(t2); // red 
draw_triangle(t3); // red 
set_color(Blue); 
draw_triangle(t4); // blue 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

OpenGL function format 

glUniform3f(x,y,z) 

belongs to GL library 

function name 

x,y,z are floats 

glUniform3fv(p) 

p is a pointer to an array 

dimensions 



Shader-based OpenGL 

Most state variables, attributes and related pre 3.1 OpenGL 
functions have been deprecated 

OpenGL rendering pipeline (after 3.1) uses shaders in Vertex 
Processor  

• Vertex shading stage: receiving and process primitives 
separately 

• E.g., specifying the colors and positions 

• Tessellation shading stage: specifying a patch, i.e., an ordered 
list of vertices and generating a mesh of primitives 

• Geometry shading stage: enabling multivertex access, changing 
primitive type 

• Fragment shading stage: processing color and depth 



GLSL 

OpenGL Shading Language 

Like a complete C program supporting 
• Matrix and vector types (2, 3, 4 dimensional) 
• Overloaded operators 
• C++ like constructors 

Code sent to shaders as source code 

Entry point is the main function main() 

OpenGL functions to compile, link and get information to 
shaders 
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Simple Vertex Shader 

#version 400 

 

in vec4 vPosition; 

void main(void) 

{ 

    gl_Position = vPosition; 

} 

glVertexAttribPointer(vPosition, 2, GL_FLOAT, 
                          GL_FALSE, 0, BUFFER_OFFSET(0)); 



Simple Fragment Program 

#version 400 

out vec4  fColor; 

void main(void) 

{ 

  fColor = vec4(1.0, 0.0, 0.0, 1.0); 

} 



Reading Assignments 

Chapter 2 of Angel 

Chapter 1&2 of OpenGL Programming Guide 
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OpenGL Primitives 

GL_TRIANGLE_STRIP 

GL_TRIANGLE_FAN 

GL_POINTS 
GL_LINES 

GL_LINE_LOOP GL_LINE_STRIP 

GL_TRIANGLES 



Primitive #1: Points 

Points are either 2- or 3-dimensional 
• by convention, represent them as column vectors 

 
 
 
 

A 2D point, a special case of a 3D point, can be represented as 
• A 2D vector (e.g, vec2(0,1) ),  
• A 3D vector (e.g., vec3(0,1,0)),  
• and more general a 4D vector (e.g., vec4(0,1,0,1)), 

or
x

x
y

y
z

 
   = =       

v v

glDrawArrays(GL_POINTS, 0, N); 
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