
Today’s Agenda

Basic design of a graphics system

Introduction to OpenGL

Image Compositing

Compositing one image over another is most common choice
• can think of each image drawn on a transparent plastic sheet
• the final image is formed by stacking layers together

Given images A & B, we can compute C = A over B

• if we pre-multiply α values, this simplifies to

Aα

Bα

𝐶𝑟𝑟𝑟 = 𝛼 𝐴𝐴𝑟𝑟𝑟 + (1 − 𝛼 𝐴)𝛼 𝐵𝐵𝑟𝑟𝑟

𝐶𝐶 = 𝐴𝐴 + (1 − 𝛼𝐴)𝐵𝐵

Image Formation

Elements of image formation:
• Illumination sources
• Objects
• Viewer (e.g., camera and eye)
• Attributes of materials

How can we design graphics hardware and software to mimic
the image formation process?

Practical Approach

Process objects one at a time in the order they are generated
by the application

Pipeline architecture

All steps can be implemented in hardware on the graphics
card

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Processing

Geometrical transformation:
• Convert object representations from one coordinate

system to another
– World (local) coordinate system built on each object
– Camera (eye) coordinate system
– Screen/image coordinate system

• Changing coordinates is computed by matrix-vector
multiplication

Color transformations: Vertex processor also
computes vertex colors

• E.g., filtering

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Processing Example: Perspective
Projection Geometry

C

Image
coordinate
system

M

m
() ()()II vu ,

Camera coordinate system

O

()00 ,vu

()CY

()CX

()CZ

() () ()()WWW ZYX ,,
()WY

()WZ

()WX

How a 3D point measured in world coordinate system produce an
image point measured in the image plane/coordinate system?

world coordinate system

How to Project a 3D Point in Camera Coordinate
System to a 2D Point in Row-Column Image Frame

()

()

()

()

()













































−

−
















=

















×

××

1
10

0100
000
000

100
0

0

1 31

1333
0

0

W

W

W

v

u
I

I

Z
Y
X

TR
f

f
vk
uk

v
u

λ

2D Image point

Spatial resolution
& image center

Focus length

Relative position
between object &
camera

3D object point

𝑃3×4

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Primitive Assembly

Vertices must be collected into geometric objects before
clipping and rasterization

• Line segments
• Polygons
• Curves and surfaces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Clipping

The virtual camera can only see part of the world or object
space according to the field of view (angle of view)

• Objects that are not within this volume are said to be clipped
out of the scene

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rasterization

Vertices  Pixels

For the objects in the clipping volume, the pixels in the
frame buffer must be assigned colors

Rasterizer produces a set of fragments for each object

Fragments are “potential pixels”
• Have a location in frame buffer
• Color and depth attributes

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fragment Processing

Fragments are processed to determine the color of the
corresponding pixel in the frame buffer

Colors can be determined by texture mapping or interpolation
of vertex colors

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The Programmer’s Interface

Programmer sees the graphics system through a software
interface: the Application Programmer Interface (API)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

API Contents

Functions that specify what we need to form an image
• Objects
• Viewer
• Light Source(s)
• Materials

Other information
• Input from devices such as mouse and keyboard

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Object Specification

Most APIs support a limited set of primitives including
• Points (0D object)
• Line segments (1D objects)
• Polygons (2D objects)
• Some curves and surfaces

–Quadrics
–Parametric polynomials

All are defined through locations in space or vertices

Introduction to OpenGL

OpenGL is an Application Programmer Interface (API) and a
standard graphics library for 2-D & 3-D drawing

• maps fairly directly to graphics hardware
• doesn’t address windows or input events (we’ll use GLUT)
• platform-independent
• a free software implementation (www.mesa3d.org)

OpenGL 3.1 Totally shader-based
• Each application must provide both a vertex and a fragment

shader

OpenGL 4.1 and 4.2
• Add geometry shaders and tessellator

http://www.mesa3d.org/

OpenGL Libraries

OpenGL core library
• OpenGL on Windows
• GL on most unix/linux systems (libGL.a)

Available when you install the graphics driver

Examples: OpenGL library calls
• glBegin()
• glEnd()
• glVertex()
• glColor()
• glClear()
• glDrawPixels()
• glLight() and more…

OpenGL Libraries

OpenGL Utility Library (GLU)
• Provides functionality in OpenGL core,

Examples: GLU library calls
• gluBeginSurface()
• gluEndSurface()
• gluSphere()
• gluCylinder()
• gluOrtho2D()
• gluPerspective()
• gluLookAt() and more…

OpenGL Libraries

OpenGL Utility Toolkit (GLUT/FreeGLUT)
• Provides functionality for all window systems

– creating windows,
– receiving inputs,
– handling events, etc.

• Some functionality can’t work since it requires deprecated functions
• FreeGLUT contains the latest developments

Examples: GLUT library calls
• glutCreateWindow()
• glutInit()
• glutDisplayFunc()
• glutMouseFunc()
• glutKeyboardFunc()
• glutMainLoop() and more…

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Extension Libraries

Links with window system
• GLX for X window systems
• WGL for Windows
• AGL for Macintosh

OpenGL Extension Wrangler Library (GLEW)

http://glew.sourceforge.net/

• Need to be initialized after creating windows

• Verify OpenGL extensions on a specific platform

• Deal with function pointers

http://glew.sourceforge.net/

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Software Organization

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Functions

Primitives – low level objects that can be displayed
• Points, line Segments, and triangles

Attributes - how objects are displayed
• Color, pattern, etc.

Transformations
• Viewing
• Modeling

Control (GLUT)
• Initialization, windows, etc.

Input (GLUT)

Query
• Timer, occlusion, primitives, etc.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL State

OpenGL is a state machine

OpenGL functions are of two types
• Primitive generating

– Very few
– Can cause output if primitive is visible
– How vertices are processed and appearance of primitive are

controlled by the state
• State changing

– Transformation functions
– Attribute functions
– Under 3.1 most state variables are defined by the application

and sent to the shaders

Extensive State Information

Always a “current” state, initialized with default values
• changes to the state apply to all subsequent operations

Examples of state information include
• current drawing color, line width, point size, …
• coordinate system (defined by transformation matrix)
• enabled features: depth tests, alpha blending, lighting, …

set_color(Red);
draw_triangle(t1); // red
draw_triangle(t2); // red
draw_triangle(t3); // red
set_color(Blue);
draw_triangle(t4); // blue

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL function format

glUniform3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glUniform3fv(p)

p is a pointer to an array

dimensions

Shader-based OpenGL

Most state variables, attributes and related pre 3.1 OpenGL
functions have been deprecated

OpenGL rendering pipeline (after 3.1) uses shaders in Vertex
Processor

• Vertex shading stage: receiving and process primitives
separately

• E.g., specifying the colors and positions

• Tessellation shading stage: specifying a patch, i.e., an ordered
list of vertices and generating a mesh of primitives

• Geometry shading stage: enabling multivertex access, changing
primitive type

• Fragment shading stage: processing color and depth

GLSL

OpenGL Shading Language

Like a complete C program supporting
• Matrix and vector types (2, 3, 4 dimensional)
• Overloaded operators
• C++ like constructors

Code sent to shaders as source code

Entry point is the main function main()

OpenGL functions to compile, link and get information to
shaders

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Vertex Shader

#version 400

in vec4 vPosition;

void main(void)

{

 gl_Position = vPosition;

}

glVertexAttribPointer(vPosition, 2, GL_FLOAT,
 GL_FALSE, 0, BUFFER_OFFSET(0));

Simple Fragment Program

#version 400

out vec4 fColor;

void main(void)

{

 fColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Reading Assignments

Chapter 2 of Angel

Chapter 1&2 of OpenGL Programming Guide

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Primitives

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_POINTS
GL_LINES

GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES

Primitive #1: Points

Points are either 2- or 3-dimensional
• by convention, represent them as column vectors

A 2D point, a special case of a 3D point, can be represented as
• A 2D vector (e.g, vec2(0,1)),
• A 3D vector (e.g., vec3(0,1,0)),
• and more general a 4D vector (e.g., vec4(0,1,0,1)),

or
x

x
y

y
z

 
   = =       

v v

glDrawArrays(GL_POINTS, 0, N);

	Today’s Agenda
	Image Compositing
	Image Formation
	Practical Approach
	Vertex Processing
	Vertex Processing Example: Perspective Projection Geometry
	How to Project a 3D Point in Camera Coordinate System to a 2D Point in Row-Column Image Frame
	Primitive Assembly
	Clipping
	Rasterization
	Fragment Processing
	The Programmer’s Interface
	API Contents
	Object Specification
	Introduction to OpenGL
	OpenGL Libraries
	OpenGL Libraries
	OpenGL Libraries
	OpenGL Extension Libraries
	Software Organization
	OpenGL Functions
	OpenGL State
	Extensive State Information
	OpenGL function format
	Shader-based OpenGL
	GLSL
	Simple Vertex Shader
	Simple Fragment Program
	Reading Assignments
	OpenGL Primitives
	Primitive #1: Points

