Quiz 2

Take-home
5pm Wednesday, Nov. 30 - 2am Thursday, Dec. 1

Topics

Procedural methods

Procedural Methods

How can we model

- Natural phenomena
-Clouds
-Terrain
-Plants
- Crowd Scenes
- Real physical processes

Procedural methods:

Describe objects in an algorithmic way and generate polygons when needed during rendering

Procedural Approaches

- Physically-based models and particle system
- Describing dynamic behaviors
o Fireworks
o Flocking behavior of birds
o Wave action
- Language-based models
- Describing trees or terrain
- Representing relationships
- Fractal geometry

Newtonian Particle

Particle system is a set of particles

Each particle is an ideal point mass

- Gives the positions of particles
- At each location, we can show an object

Six degrees of freedom

- Position
- Velocity

Each particle obeys Newtons' law

$$
\begin{aligned}
& \mathbf{f}=m \mathbf{a} \\
& \text { Vectors in 3D }
\end{aligned}
$$

Particle Equations

The state of the $\mathrm{i}^{\text {th }}$ particle is defined by its position $\mathbf{p}_{i}=$
Then, we have 6 ordinary differential equations:
Velocity $\mathbf{v}_{i}=\frac{d \mathbf{p}_{i}}{d t}=\left[\begin{array}{l}\frac{d x_{i}}{d t} \\ \frac{d y_{i}}{d t} \\ \frac{d z_{i}}{d t}\end{array}\right]$
Acceleration $\mathbf{a}_{i}=\frac{d \mathbf{v}_{i}}{d t}=\frac{1}{m_{i}} \mathbf{f}_{i}(t)$
The question is how we get the force vector

Solution of Particle Systems

//For a system with n particles
float time, delta, state[6n], force[3n];
state = initial_state();
for(time = t0; time<final_time, time+=delta) \{
I/compute forces
force = force_function(state, time);
I/ solve the differential equation
state = ode(force, state, time, delta);
render(state, time)
\}
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Force Vector

Depending on how particles interact with each other

- Independent Particles O(n)
-Gravity
-Drag
- Coupled Particles O(n)
-Spring-Mass Systems
-Meshes
- Coupled Particles O(n^{2})
-Attractive and repulsive forces

Simple Forces

Consider force on a particle i

$$
\mathbf{f}_{\mathrm{i}}=\mathbf{f}_{\mathrm{i}}\left(\mathbf{p}_{\mathrm{i}}, \mathbf{v}_{\mathbf{i}}\right)
$$

Gravity $\mathbf{f}_{g i}=m_{i} \mathbf{g}$

$$
\mathbf{g}_{i}=(0,-g, 0)
$$

$\operatorname{Drag} \mathbf{f}_{\boldsymbol{d} i}=\mu_{i} \mathbf{f}_{\text {normi }}$

$$
\mathbf{p}_{\mathrm{i}}\left(\mathrm{t}_{0}\right), \mathbf{v}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)
$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spring Forces

Assume each particle has unit mass and is connected to its neighbor(s) by a spring

Keep particles together
Hooke's law: force proportional to distance ($\mathrm{d}=\|\mathrm{p}-\mathrm{q}\|$) between the points

Hooke's Law

Let s be the distance when there is no force (resting length)
The force is acted on \mathbf{p} from \mathbf{q}

$$
\mathbf{f}=-k_{s}(|\mathbf{d}|-s) \frac{\mathbf{d}}{|\mathbf{d}|}
$$

k_{s} is the spring constant
$\frac{d}{|d|}$ is a unit vector pointed from p to q

Spring Damping

A pure spring-mass will oscillate forever
Must add a damping term

$$
\mathbf{f}=-\left(k_{s}(|\mathbf{d}|-s)+k_{d} \frac{\mathbf{d} \cdot \mathbf{d}}{|\mathbf{d}|}\right) \frac{\mathbf{d}}{|\mathbf{d}|}
$$

Damping constant

$$
\begin{aligned}
& \dot{\mathbf{d}}=\dot{\mathbf{p}}-\dot{\mathbf{q}} \\
& \dot{\mathbf{d}} \cdot \mathbf{d}=(\dot{\mathbf{p}}-\dot{\mathbf{q}}) \cdot(\mathbf{p}-\mathbf{q})
\end{aligned}
$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Meshes

Connect each particle to its closest neighbors

- O(n) force calculation

Use spring-mass system

Each interior point in mesh has four forces applied to it

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Attraction and Repulsion

Attraction forces pull particles toward each other
Repulsion forces push particles away from each other

- Distribute objects
- Keep objects from hitting each other

These two types of forces are the same except for a sign

Attraction and Repulsion

For a pair of particles at \mathbf{p} and \mathbf{q}
Inverse square law

$$
\mathbf{f}=-k_{r} \frac{\mathbf{d}}{|\mathbf{d}|^{3}}
$$

General case requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ calculation
In most problems, the drop off is such that not many particles contribute to the forces on any given particle

Boxes

Spatial subdivision technique
Divide space into boxes
Particle can only interact with particles in its box or the neighboring boxes

Must update which box a particle belongs to after each time step

Linked Lists

Each particle maintains a linked list of its neighbors

Update data structure at each time step

Angel's Example of Particles in a Box

```
float forces( int i, int j )
{
    int k;
    float force = 0.0;
    /* simple gravity */
    if ( gravity && j == 1 )
        force = -1.0;
    /* repulsive force */
    if (repulsion )
        for (k = 0; k < num_particles; k++ ) {
            if (k != i)
            force += 0.001 * (particles[i].position[j] - particles[k].position[j] ) / ( 0.001 +
d2[i][k] );
    }
    return ( force );
}
```


Example (Cont'd)

```
void idle( void )
{
    int i, j, k;
    float dt;
    present_time = glutGet( GLUT_ELAPSED_TIME );
    dt = 0.001 * ( present_time - last_time );
    for (i = 0; i < num_particles; i++ ) {
        for ( j = 0; j < 3; j++ ) {
            particles[i].position[j] += dt * particles[i].velocity[j];
            particles[i].velocity[j] += dt * forces( i, j ) / particles[i].mass;
        }
        collision( i );
    }
```


Example (Cont'd)

if (repulsion)
for ($\mathrm{i}=0 ; \mathrm{i}$ < num_particles; $\mathrm{i}++$)
for ($k=0 ; k<i ; k++$) \{
d2[i][k] = 0.0;
for ($\mathrm{j}=0 ; \mathrm{j}<3$; $\mathrm{j}++$)
d2[i][k] += (particles[i].position[j] - particles[k].position[j]) *
(particles[i].position[j] - particles[k].position[j]);
$\mathrm{d} 2[\mathrm{k}][\mathrm{i}]=\mathrm{d} 2[\mathrm{i}][\mathrm{k}] ;$
\}
last_time = present_time; glutPostRedisplay();
\}

Example (Cont'd)

```
void collision( int n )
/* tests for collisions against cube and reflect particles if necessary */
{
    int i;
    for (i = 0; i < 3; i++ ) {
        if ( particles[n].position[i] >= 1.0 ) {
            particles[n].velocity[i] = -coef * particles[n].velocity[i];
            particles[n].position[i] = 1.0 - coef * ( particles[n].position[i] - 1.0 );
        }
        if ( particles[n].position[i] <= -1.0 ) {
            particles[n].velocity[i] = -coef * particles[n].velocity[i];
            particles[n].position[i] = -1.0 - coef * ( particles[n].position[i] + 1.0 );
        }
    }
}
```


Example (Cont'd)

```
void display( void )
{
    glClear( GL_COLOR_BUFFER_BIT );
    for (i = 0; i < num_particles; i++ ) {
        point_colors[i + 24] = colors[particles[i].color];
        points[i + 24] = particles[i].position;
    }
    glBufferSubData( GL_ARRAY_BUFFER, 0, sizeof(points), points );
    glBufferSubData( GL_ARRAY_BUFFER, sizeof(points), sizeof(point_colors),
point_colors );
    gIDrawArrays( GL_POINTS, 24, num_particles );
    glutSwapBuffers();
}
```


Reading Assignments

Chapter 9.4-9.9 in Angel \& Shreiner
Chapter 10 \& 11 in Angel \& Shreiner
Chapter 9-12 in Shreiner et al.

