
Quiz 2

Take-home

5pm Wednesday, Nov. 30 – 2am Thursday, Dec. 1

Topics

Procedural methods

Procedural Methods

How can we model
• Natural phenomena

–Clouds
–Terrain
–Plants

• Crowd Scenes
• Real physical processes

Procedural methods:

Describe objects in an algorithmic way and generate polygons
when needed during rendering

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Procedural Approaches

• Physically-based models and particle system
• Describing dynamic behaviors
o Fireworks
o Flocking behavior of birds
o Wave action

• Language-based models
• Describing trees or terrain
• Representing relationships

• Fractal geometry

Newtonian Particle
Particle system is a set of particles

Each particle is an ideal point mass
• Gives the positions of particles
• At each location, we can show an object

Six degrees of freedom
• Position
• Velocity

Each particle obeys Newtons’ law
𝐟 = 𝑚𝐚

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vectors in 3D

Particle Equations

The state of the ith particle is defined by its position 𝐩𝑖 =
𝑥𝑖
𝑦𝑖
𝑧𝑖

Then, we have 6 ordinary differential equations:

Velocity 𝐯𝑖 = 𝑑𝐩𝑖
𝑑𝑡

=

𝑑𝑥𝑖
𝑑𝑡
𝑑𝑦𝑖
𝑑𝑡
𝑑𝑧𝑖
𝑑𝑡

Acceleration 𝐚𝑖 = 𝑑𝐯𝑖
𝑑𝑡

= 1
𝑚𝑖
𝐟𝑖(𝑡)

The question is how we get the force vector

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Solution of Particle Systems

//For a system with n particles
float time, delta, state[6n], force[3n];

state = initial_state();

for(time = t0; time<final_time, time+=delta) {

 //compute forces

 force = force_function(state, time);

 // solve the differential equation

 state = ode(force, state, time, delta);

 render(state, time)

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Force Vector

Depending on how particles interact with each other
• Independent Particles O(n)

–Gravity
–Drag

• Coupled Particles O(n)
–Spring-Mass Systems
–Meshes

• Coupled Particles O(n2)
–Attractive and repulsive forces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Forces

Consider force on a particle i

 fi = fi(pi, vi)

Gravity 𝐟𝒈𝒈 = 𝑚𝑖 𝐠

 𝐠𝑖 = (0,−𝑔, 0)

Drag 𝐟𝒅𝒈 = 𝜇𝑖 𝐟𝒏𝒏𝒏𝒏𝒈

pi(t0), vi(t0)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spring Forces

Assume each particle has unit mass and is connected to
its neighbor(s) by a spring

Keep particles together

Hooke’s law: force proportional to distance (d = ||p – q||)
between the points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hooke’s Law

Let s be the distance when there is no force (resting length)

The force is acted on p from q

 𝐟 = −𝑘𝑠(|𝐝| − 𝑠) 𝐝
|𝐝|

ks is the spring constant

𝐝
|𝐝| is a unit vector pointed from p to q

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spring Damping

A pure spring-mass will oscillate forever

Must add a damping term
𝐟 = − 𝑘𝑠 𝐝 − 𝑠 + 𝑘𝑑

�̇� ∙ 𝐝
𝐝

𝐝
𝐝

�̇� = �̇� − �̇�
�̇� ∙ 𝐝 = �̇� − �̇� ∙ (𝐩 − 𝐪)

Damping constant

Meshes

Connect each particle to its closest neighbors
• O(n) force calculation

Use spring-mass system

Each interior point in mesh has four forces applied to it

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Attraction and Repulsion

Attraction forces pull particles toward each other

Repulsion forces push particles away from each other
• Distribute objects
• Keep objects from hitting each other

These two types of forces are the same except for a sign

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Attraction and Repulsion

For a pair of particles at p and q

Inverse square law
𝐟 = −𝑘𝑟

𝐝
𝐝 3

General case requires O(n2) calculation

In most problems, the drop off is such that not many
particles contribute to the forces on any given particle

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Boxes

Spatial subdivision technique

Divide space into boxes

Particle can only interact with particles in its box or the
neighboring boxes

Must update which box a particle belongs to after each
time step

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Linked Lists

Each particle maintains a linked list of its neighbors

Update data structure at each time step

Angel’s Example of Particles in a Box

float forces(int i, int j)
{
 int k;
 float force = 0.0;
 /* simple gravity */
 if (gravity && j == 1)
 force = -1.0;
 /* repulsive force */
 if (repulsion)
 for (k = 0; k < num_particles; k++) {
 if (k != i)
 force += 0.001 * (particles[i].position[j] - particles[k].position[j]) / (0.001 +
d2[i][k]);
 }
 return (force);
}

Example (Cont’d)
void idle(void)
{
 int i, j, k;
 float dt;
 present_time = glutGet(GLUT_ELAPSED_TIME);
 dt = 0.001 * (present_time - last_time);
 for (i = 0; i < num_particles; i++) {
 for (j = 0; j < 3; j++) {
 particles[i].position[j] += dt * particles[i].velocity[j];
 particles[i].velocity[j] += dt * forces(i, j) / particles[i].mass;
 }
 collision(i);
 }
…

Example (Cont’d)

…
if (repulsion)
 for (i = 0; i < num_particles; i++)
 for (k = 0; k < i; k++) {
 d2[i][k] = 0.0;
 for (j = 0; j < 3; j++)
 d2[i][k] += (particles[i].position[j] - particles[k].position[j]) *
 (particles[i].position[j] - particles[k].position[j]);
 d2[k][i] = d2[i][k];
 }
 last_time = present_time;
 glutPostRedisplay();
}

Example (Cont’d)
void collision(int n)
/* tests for collisions against cube and reflect particles if necessary */
{
 int i;
 for (i = 0; i < 3; i++) {
 if (particles[n].position[i] >= 1.0) {
 particles[n].velocity[i] = -coef * particles[n].velocity[i];
 particles[n].position[i] = 1.0 - coef * (particles[n].position[i] - 1.0);
 }
 if (particles[n].position[i] <= -1.0) {
 particles[n].velocity[i] = -coef * particles[n].velocity[i];
 particles[n].position[i] = -1.0 - coef * (particles[n].position[i] + 1.0);
 }
 }
}

Example (Cont’d)

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 for (i = 0; i < num_particles; i++) {
 point_colors[i + 24] = colors[particles[i].color];
 points[i + 24] = particles[i].position;
 }
 glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(points), points);
 glBufferSubData(GL_ARRAY_BUFFER, sizeof(points), sizeof(point_colors),
point_colors);
 glDrawArrays(GL_POINTS, 24, num_particles);
 glutSwapBuffers();
}

Reading Assignments

Chapter 9.4 – 9.9 in Angel & Shreiner

Chapter 10 & 11 in Angel & Shreiner

Chapter 9 – 12 in Shreiner et al.

	Quiz 2
	Topics
	Procedural Methods
	Procedural Approaches
	Newtonian Particle
	Particle Equations
	Solution of Particle Systems
	Force Vector
	Simple Forces
	Spring Forces
	Hooke’s Law
	Spring Damping
	Meshes
	Attraction and Repulsion
	Attraction and Repulsion
	Boxes
	Linked Lists
	Angel’s Example of Particles in a Box
	Example (Cont’d)
	Example (Cont’d)
	Example (Cont’d)
	Example (Cont’d)
	Reading Assignments

