
Quiz 2 

Take-home 

5pm Wednesday, Nov. 30 – 2am Thursday, Dec. 1 



Topics 

Procedural methods 

 



Procedural Methods 

How can we model 
• Natural phenomena 

–Clouds 
–Terrain 
–Plants 

• Crowd Scenes 
• Real physical processes 

Procedural methods:  

Describe objects in an algorithmic way and generate polygons 
when needed during rendering 
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Procedural Approaches 

• Physically-based models and particle system 
• Describing dynamic behaviors 
o Fireworks 
o Flocking behavior of birds 
o Wave action 

• Language-based models 
• Describing trees or terrain 
• Representing relationships 

• Fractal geometry 



Newtonian Particle 
Particle system is a set of particles 

Each particle is an ideal point mass 
• Gives the positions of particles 
• At each location, we can show an object 

Six degrees of freedom 
• Position 
• Velocity 

Each particle obeys Newtons’ law 
𝐟 =  𝑚𝐚 
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Vectors in 3D 



Particle Equations 

The state of the ith particle is defined by its position 𝐩𝑖 =  
𝑥𝑖
𝑦𝑖
𝑧𝑖

 

Then, we have 6 ordinary differential equations: 

Velocity 𝐯𝑖 =  𝑑𝐩𝑖
𝑑𝑡

=

𝑑𝑥𝑖
𝑑𝑡
𝑑𝑦𝑖
𝑑𝑡
𝑑𝑧𝑖
𝑑𝑡

 

Acceleration 𝐚𝑖 =  𝑑𝐯𝑖
𝑑𝑡

= 1
𝑚𝑖
𝐟𝑖(𝑡) 

The question is how we get the force vector 
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Solution of Particle Systems 

//For a system with n particles 
float time, delta, state[6n], force[3n]; 

state = initial_state(); 

for(time = t0; time<final_time, time+=delta) { 

 //compute forces 

 force =  force_function(state, time); 

 // solve the differential equation 

 state = ode(force, state, time, delta); 

 render(state, time) 

} 
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Force Vector 

Depending on how particles interact with each other 
• Independent Particles O(n)  

–Gravity 
–Drag 

• Coupled Particles O(n) 
–Spring-Mass Systems 
–Meshes 

• Coupled Particles O(n2) 
–Attractive and repulsive forces 
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Simple Forces 

Consider force on a particle i 

         fi = fi(pi, vi) 

Gravity 𝐟𝒈𝒈 = 𝑚𝑖 𝐠 

         𝐠𝑖 =  (0,−𝑔, 0) 

Drag 𝐟𝒅𝒈 = 𝜇𝑖 𝐟𝒏𝒏𝒏𝒏𝒈 

pi(t0), vi(t0) 
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Spring Forces 

Assume each particle has unit mass and is connected to 
its neighbor(s) by a spring 

Keep particles together 

Hooke’s law: force proportional to distance (d = ||p – q||) 
between the points 
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Hooke’s Law 

Let s be the distance when there is no force (resting length) 

The force is acted on p from q 

                𝐟 =  −𝑘𝑠(|𝐝|  −  𝑠) 𝐝
|𝐝|  

ks is the spring constant 

𝐝
|𝐝| is a unit vector pointed from p to q 
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Spring Damping 

A pure spring-mass will oscillate forever 

Must add a damping term 
𝐟 = − 𝑘𝑠 𝐝 − 𝑠 + 𝑘𝑑

�̇� ∙ 𝐝
𝐝

𝐝
𝐝

 

 

 
�̇� = �̇� − �̇� 
�̇� ∙ 𝐝 = �̇� − �̇� ∙ (𝐩 − 𝐪) 

Damping constant 



Meshes 

Connect each particle to its closest neighbors 
• O(n) force calculation 

Use spring-mass system 

Each interior point in mesh has four forces applied to it 
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Attraction and Repulsion 

Attraction forces pull particles toward each other 

Repulsion forces push particles away from each other 
• Distribute objects 
• Keep objects from hitting each other 

These two types of forces are the same except for a sign 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Attraction and Repulsion 

For a pair of particles at p and q 

Inverse square law 
𝐟 = −𝑘𝑟

𝐝
𝐝 3 

General case requires O(n2) calculation 

In most problems, the drop off is such that not many 
particles contribute to the forces on any given particle 
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Boxes 

Spatial subdivision technique 

Divide space into boxes 

Particle can only interact with particles in its box or the 
neighboring boxes 

Must update which box a particle belongs to after each 
time step 
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Linked Lists 

Each particle maintains a linked list of its neighbors 

Update data structure at each time step 



Angel’s Example of Particles in a Box 

float forces( int i, int j ) 
{ 
    int k; 
    float force = 0.0; 
    /* simple gravity */ 
    if ( gravity && j == 1 ) 
        force = -1.0;  
    /* repulsive force */ 
    if ( repulsion ) 
        for ( k = 0; k < num_particles; k++ ) { 
            if ( k != i ) 
                force +=  0.001 * ( particles[i].position[j] - particles[k].position[j] ) / ( 0.001 + 
d2[i][k] ); 
        } 
    return ( force ); 
} 
 



Example (Cont’d) 
void idle( void ) 
{ 
    int i, j, k; 
    float  dt; 
    present_time = glutGet( GLUT_ELAPSED_TIME ); 
    dt = 0.001 * ( present_time - last_time ); 
    for ( i = 0; i < num_particles; i++ ) { 
        for ( j = 0; j < 3; j++ ) { 
            particles[i].position[j] += dt * particles[i].velocity[j]; 
            particles[i].velocity[j] += dt * forces( i, j ) / particles[i].mass; 
        } 
        collision( i ); 
    } 
… 
     



Example (Cont’d) 

… 
if ( repulsion ) 
        for ( i = 0; i < num_particles; i++ ) 
            for ( k = 0; k < i; k++ ) { 
                d2[i][k] = 0.0; 
                for ( j = 0; j < 3; j++ ) 
                    d2[i][k] += ( particles[i].position[j] - particles[k].position[j] ) * 
                        ( particles[i].position[j] - particles[k].position[j] ); 
                d2[k][i] = d2[i][k]; 
            } 
    last_time = present_time; 
    glutPostRedisplay(); 
} 

 

 



Example (Cont’d) 
void collision( int n ) 
/* tests for collisions against cube and reflect particles if necessary */ 
{ 
    int i; 
    for ( i = 0; i < 3; i++ ) { 
        if ( particles[n].position[i] >= 1.0 ) { 
            particles[n].velocity[i] = -coef * particles[n].velocity[i]; 
            particles[n].position[i] = 1.0 - coef * ( particles[n].position[i] - 1.0 ); 
        } 
        if ( particles[n].position[i] <= -1.0 ) { 
            particles[n].velocity[i] = -coef * particles[n].velocity[i]; 
            particles[n].position[i] = -1.0 - coef * ( particles[n].position[i] + 1.0 ); 
        } 
    } 
} 

 



Example (Cont’d) 

void display( void ) 
{ 
    glClear( GL_COLOR_BUFFER_BIT ); 
    for ( i = 0; i < num_particles; i++ ) { 
        point_colors[i + 24] = colors[particles[i].color]; 
        points[i + 24] = particles[i].position; 
    } 
    glBufferSubData( GL_ARRAY_BUFFER, 0, sizeof(points), points ); 
    glBufferSubData( GL_ARRAY_BUFFER, sizeof(points), sizeof(point_colors), 
point_colors ); 
    glDrawArrays( GL_POINTS, 24, num_particles ); 
   glutSwapBuffers(); 
} 



Reading Assignments 

Chapter 9.4 – 9.9 in Angel & Shreiner 

Chapter 10 & 11 in Angel & Shreiner 

Chapter 9 – 12 in Shreiner et al. 
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