Final Exam

Time: 12:30pm - 3:00 pm, Friday, December 9
Closed book and closed notes
Note:

- closed-book and closed-note
- one letter-size cheat sheet, you can use both sides
- coverage: all materials covered discussed in the class

Quiz 2

Take-home
5pm Wednesday, Nov. 30 - 2am Thursday, Dec. 1

Topics

Hierarchical modeling

Procedural methods

Generalizations

Need to deal with multiple children

- How do we represent a more general tree?
- How do we traverse such a data structure?

Animation

- How to use dynamically?
- Can we create and delete nodes during execution?

Humanoid Figure

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Building the Model

Can build a simple implementation using quadrics:

- ellipsoids and cylinders

Access parts through functions drawing individual parts in their own frames
-torso()
-left_upper_arm()
Matrices describe position of node with respect to its parent

- $\mathbf{M}_{\text {lla }}$ positions left lower arm with respect to left upper arm

Tree with Matrices

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Display and Traversal

The position of the figure is determined by 11 joint angles (two for the head and one for each other part)

Display of the tree requires a graph traversal

- Visit each node once
- Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation

Transformation Matrices

There are 10 relevant matrices

- M positions and orients entire figure through the torso which is the root node
- \mathbf{M}_{h} positions head with respect to torso
- $\mathbf{M}_{\text {lua }}, \mathbf{M}_{\text {rua }}, \mathbf{M}_{\text {lul }}, \mathbf{M}_{\text {rul }}$ position arms and legs with respect to torso
$\bullet \mathbf{M}_{\mathrm{lla}}, \mathbf{M}_{\mathrm{rla}}, \mathbf{M}_{\mathrm{ll}}, \mathbf{M}_{\mathrm{rll}}$ position lower parts of limbs with respect to corresponding upper limbs

Stack-based Traversal

Set model-view matrix to \mathbf{M} and draw torso
Set model-view matrix to $\mathbf{M M}_{\mathbf{h}}$ and draw head
For left-upper arm need $\mathbf{M M}_{\text {lua }}$ and so on
Rather than recomputing $\mathbf{M M}_{\text {lua }}$ from scratch or using an inverse matrix, we can use the matrix stack to store \mathbf{M} and other matrices as we traverse the tree

Stack-based Traversal

```
class MatrixStack {
    int _index; int _size; mat4* _matrices;
    public:
    MatrixStack( int numMatrices = 32 ):_index(0), _size(numMatrices)
        { _matrices = new mat4[numMatrices]; }
    ~MatrixStack(){ delete[]_matrices; }
    mat4& push( const mat4& m ) {
        assert(_index + 1 < _size ); _matrices[_index++] = m;
    }
    mat4& pop( void ) {
        assert( _index - 1 >= 0 ); _index--;
        return _matrices[index];
    }
};
```


Notes

The position of figure is determined by 11 joint angles stored in theta[11]

Animate by changing the angles and redisplaying
We form the required matrices using Rotate and Translate

- Because the matrix is formed using the model-view matrix, we may want to first push original modelview matrix on matrix stack

Traversal Code

mat4 model_view;
matrix_stack mvstack;
figure() \{
//save present model-view matrix mvstack.push(model_view); torso();
//update model-view matrix for head model_view = model_view*Translate()*Rotate(); head();
//recover original model-view matrix model_view = mvstack.pop();
//save it again mvstack.push(model_view);
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Traversal Code

//update model-view matrix for left upper arm model_view = model_view*Translate()*Rotate(); left_upper_arm();
//recover and save original model-view matrix again model_view = mvstack.pop(); mvstack.push(model_view);
.../ /rest of code
\}

Code for Individual Parts

```
void torso(){
mvstack.push(model_view);
instance = Translate(0.0, 0.5*TORSO_HEIGHT,0.0)
*Scale(TORSO_WIDTH, TORSO_HEIGHT, TORSO_WIDTH);
glUniformMatrix4fv(model_view_loc, 16, GL_TRUE,_model_view*instance);
colorcube();
gIDrawArrays(GL_TRIANGLES, 0, N);
model_view = mvstack.pop();
}
```

Model view matrix
linked to the shader

Note: need a push at the beginning and a pop at the end to isolate this function and protect the other parts
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Code for Individual Parts

Functions for other parts can be defined similarly as for Torso.
Appendix A. 9 provides the full program for the figure with tree traversal

Analysis

The code describes a particular tree and a particular traversal strategy

- Can we develop a more general approach?

Note that the sample code does not include state changes, such as changes to colors

- May also want to use a PushAttrib and PopAttrib to protect against unexpected state changes affecting later parts of the code

General Tree Data Structure

The code describes a particular tree and a particular traversal strategy
-Can we develop a more general approach?

Need a data structure to represent tree and an algorithm to traverse the tree

We will use a left-child right sibling binary tree

- Uses linked lists
- Each node in data structure has two pointers
- Left: linked list of children
- Right: sibling
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Left-Child Right-Sibling Binary Tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree node Structure

At each node we need to store

- Pointer to sibling
- Pointer to child
- Pointer to a function that draws the object represented by the node
- Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
-Represents changes going from parent to node
-In OpenGL this matrix is a 1D array storing matrix by columns

Definition of Treenode

typedef struct treenode
\{
mat4 m ; \longrightarrow Transformation matrix
void (*f)(); \longrightarrow Drawing function
struct treenode *sibling;
struct treenode *child;
\} treenode;

Example of Torso and Head Nodes

```
treenode torso_node, head_node, lua_node, ... ;
torso_node.m = RotateY(theta[0]);
torso_node.f = torso;
torso_node.sibling = NULL;
torso_node.child = &head_node;
head_node.m = translate(0.0,TORSO_HEIGHT+0.5*HEAD_HEIGHT,
0.0)*RotateX(theta[1])*RotateY(theta[2]);
head_node.f = head;
head_node.sibling = &lua_node;
head_node.child = NULL;
```


Preorder Traversal

```
void traverse(treenode* root)
{
    if(root==NULL) return;
mvstack.push(model_view);
model_view = model_view*root->m;
root->f();
if(root->child!=NULL) traverse(root->child);
model_view = mvstack.pop();
if(root->sibling!=NULL) traverse(root->sibling);
}
```


Notes

We must save model-view matrix before multiplying it by node matrix

- Updated matrix applies to children of node but not to siblings which contain their own matrices

The traversal program applies to any left-child rightsibling tree

- The particular tree is encoded in the definition of the individual nodes

The order of traversal matters because of possible state changes in the functions

Dynamic Trees

If we use pointers, the structure can be dynamic
typedef treenode *tree_ptr;
tree_ptr torso_ptr;
torso_ptr = malloc(sizeof(treenode));
Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution

Animation

Animation is realized by changing the model view matrix of each part as a function of time

Reading Assignments

Chapter 8.6 - 8.11 in Angel \& Shreiner

Procedural Methods

How can we model

- Natural phenomena
-Clouds
-Terrain
-Plants
- Crowd Scenes
- Real physical processes

Procedural methods:

Describe objects in an algorithmic way and generate polygons when needed during rendering

Procedural Approaches

- Physically-based models and particle system
- Describing dynamic behaviors
o Fireworks
o Flocking behavior of birds
o Wave action
- Language-based models
- Describing trees or terrain
- Representing relationships
- Fractal geometry

Newtonian Particle

Particle system is a set of particles

Each particle is an ideal point mass

- Gives the positions of particles
- At each location, we can show an object

Six degrees of freedom

- Position
- Velocity

Each particle obeys Newtons' law

$$
\begin{aligned}
& \mathbf{f}=m \mathbf{a} \\
& \text { Vectors in 3D }
\end{aligned}
$$

Particle Equations

The state of the $\mathrm{i}^{\text {th }}$ particle is defined by its position $\mathbf{p}_{i}=$
Then, we have 6 ordinary differential equations:
Velocity $\mathbf{v}_{i}=\frac{d \mathbf{p}_{i}}{d t}=\left[\begin{array}{l}\frac{d x_{i}}{d t} \\ \frac{d y_{i}}{d} \\ \frac{d z_{i}}{d t}\end{array}\right]$
Acceleration $\mathbf{a}_{i}=\frac{d \mathbf{v}_{i}}{d t}=\frac{1}{m_{i}} \mathbf{f}_{i}(t)$
The question is how we get the force vector

Solution of Particle Systems

//For a system with n particles
float time, delta, state[6n], force[3n];
state = initial_state();
for(time = t0; time<final_time, time+=delta) \{
I/compute forces
force = force_function(state, time);
I/ solve the differential equation
state = ode(force, state, time, delta);
render(state, time)
\}
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Force Vector

Depending on how particles interact with each other

- Independent Particles O(n)
-Gravity
-Drag
- Coupled Particles O(n)
-Spring-Mass Systems
-Meshes
- Coupled Particles O(n^{2})
-Attractive and repulsive forces

Simple Forces

Consider force on a particle i

$$
\mathbf{f}_{\mathrm{i}}=\mathbf{f}_{\mathrm{i}}\left(\mathbf{p}_{\mathrm{i}}, \mathbf{v}_{\mathbf{i}}\right)
$$

Gravity $\mathbf{f}_{g i}=m_{i} \mathbf{g}$

$$
\mathbf{g}_{i}=(0,-g, 0)
$$

$\operatorname{Drag} \mathbf{f}_{\boldsymbol{d} i}=\mu_{i} \mathbf{f}_{\text {normi }}$

$$
\mathbf{p}_{\mathrm{i}}\left(\mathrm{t}_{0}\right), \mathbf{v}_{\mathrm{i}}\left(\mathrm{t}_{0}\right)
$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spring Forces

Assume each particle has unit mass and is connected to its neighbor(s) by a spring

Keep particles together
Hooke's law: force proportional to distance ($\mathrm{d}=\|\mathrm{p}-\mathrm{q}\|$) between the points

