
Final Exam 

Time: 12:30pm – 3:00 pm, Friday, December 9 

Closed book and closed notes  

Note:  
• closed-book and closed-note 
• one letter-size cheat sheet, you can use both sides 
• coverage: all materials covered discussed in the class 

 



Quiz 2 

Take-home 

5pm Wednesday, Nov. 30 – 2am Thursday, Dec. 1 



Topics 

Hierarchical modeling 

Procedural methods 

 



Generalizations 

Need to deal with multiple children 
• How do we represent a more general tree? 
• How do we traverse such a data structure? 

Animation 
• How to use dynamically? 
• Can we create and delete nodes during execution? 
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Humanoid Figure 
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Building the Model 

Can build a simple implementation using quadrics:  
• ellipsoids and cylinders 

Access parts through functions drawing individual parts in 
their own frames 
•torso() 
•left_upper_arm() 

Matrices describe position of node with respect to its parent 
• Mlla positions left lower arm with respect to left upper arm 
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Tree with Matrices 
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Display and Traversal 

The position of the figure is determined by 11 joint angles 
(two for the head and one for each other part) 

 
Display of the tree requires a graph traversal 

• Visit each node once 
• Display function at each node that describes the part 

associated with the node, applying the correct 
transformation matrix for position and orientation 
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Transformation Matrices 

There are 10 relevant matrices 
• M positions and orients entire figure through the 

torso which is the root node 
• Mh positions head with respect to torso 
• Mlua, Mrua, Mlul, Mrul position arms and legs with 

respect to torso 
• Mlla, Mrla, Mlll, Mrll position lower parts of limbs with 

respect to corresponding upper limbs 
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Stack-based Traversal 

Set model-view matrix to M and draw torso 

Set model-view matrix to MMh and draw head 

For left-upper arm need MMlua and so on 

Rather than recomputing MMlua from scratch or using an 
inverse matrix, we can use the matrix stack to store M 
and other matrices as we traverse the tree 
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Stack-based Traversal 

class MatrixStack { 
    int    _index;    int    _size;    mat4*  _matrices; 
   public: 
    MatrixStack( int numMatrices = 32 ):_index(0), _size(numMatrices) 
        { _matrices = new mat4[numMatrices]; } 
    ~MatrixStack(){ delete[]_matrices; } 
    mat4& push( const mat4& m ) { 
        assert( _index + 1 < _size );        _matrices[_index++] = m; 
    } 
    mat4& pop( void ) { 
        assert( _index - 1 >= 0 );        _index--; 
        return _matrices[_index]; 
    } 
}; 

 



Notes 

The position of figure is determined by 11 joint angles 
stored in theta[11] 

Animate by changing the angles and redisplaying 

We form the required matrices using Rotate and 
Translate  

• Because the matrix is formed using the model-view 
matrix, we may want to first push original model-
view matrix on matrix stack 
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Traversal Code 

mat4 model_view; 
matrix_stack mvstack; 
figure() { 
 //save present model-view matrix 
   mvstack.push(model_view); 
   torso(); 
 //update model-view matrix for head 
   model_view = model_view*Translate()*Rotate(); 
   head(); 
   //recover original model-view matrix 
   model_view = mvstack.pop(); 
 //save it again 
   mvstack.push(model_view); 
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Traversal Code 

…  

//update model-view matrix for left upper arm 
   model_view = model_view*Translate()*Rotate(); 
   left_upper_arm(); 

//recover and save original model-view matrix again 
   model_view = mvstack.pop(); 
   mvstack.push(model_view); 
 
…//rest of code 
} 
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Code for Individual Parts 

void torso(){ 

mvstack.push(model_view); 

instance = Translate(0.0, 0.5*TORSO_HEIGHT,0.0) 

*Scale(TORSO_WIDTH, TORSO_HEIGHT, TORSO_WIDTH); 

glUniformMatrix4fv(model_view_loc, 16, GL_TRUE, model_view*instance); 

colorcube(); 

glDrawArrays(GL_TRIANGLES, 0, N); 

model_view = mvstack.pop(); 

} 
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Note: need a push at the beginning and a pop at the end to 
isolate this function and protect the other parts 

Model view matrix 
linked to the shader 



Code for Individual Parts 

Functions for other parts can be defined similarly as for Torso. 

Appendix A.9 provides the full program for the figure with tree 
traversal 



Analysis 

The code describes a particular tree and a particular traversal 
strategy 

• Can we develop a more general approach? 

Note that the sample code does not include state changes, 
such as changes to colors 

• May also want to use a PushAttrib and PopAttrib to 
protect against unexpected state changes affecting later 
parts of the code 
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General Tree Data Structure 

The code describes a particular tree and a particular traversal 
strategy 

• Can we develop a more general approach? 

 

Need a data structure to represent tree and an algorithm to 
traverse the tree 

We will use a left-child right sibling binary tree 
• Uses linked lists 
• Each node in data structure has two pointers 
• Left: linked list of children 
• Right: sibling 
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Left-Child Right-Sibling Binary Tree 
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Tree node Structure 

At each node we need to store  
• Pointer to sibling 
• Pointer to child 
• Pointer to a function that draws the object represented 

by the node 
• Homogeneous coordinate matrix to multiply on the right 

of the current model-view matrix 
–Represents changes going from parent to node 
– In OpenGL this matrix is a 1D array storing matrix by columns  
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Definition of Treenode 

typedef struct treenode 

{ 

   mat4 m; 

   void (*f)(); 

   struct treenode *sibling; 

   struct treenode *child; 

} treenode; 
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Transformation matrix 
Drawing function 



Example of Torso and Head Nodes 
treenode torso_node, head_node, lua_node, … ; 

torso_node.m = RotateY(theta[0]); 

torso_node.f = torso; 

torso_node.sibling = NULL; 

torso_node.child =  &head_node; 

head_node.m = translate(0.0,TORSO_HEIGHT+0.5*HEAD_HEIGHT, 
0.0)*RotateX(theta[1])*RotateY(theta[2]); 

head_node.f = head; 

head_node.sibling = &lua_node; 

head_node.child = NULL;             
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Preorder Traversal 
void traverse(treenode* root) 

{ 

   if(root==NULL) return; 

   mvstack.push(model_view); 

   model_view = model_view*root->m; 

   root->f(); 

   if(root->child!=NULL) traverse(root->child); 

   model_view = mvstack.pop(); 

   if(root->sibling!=NULL) traverse(root->sibling); 

} 
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Notes 

We must save model-view matrix before multiplying it 
by node matrix  

• Updated matrix applies to children of node but not to 
siblings which contain their own matrices 

The traversal program applies to any left-child right-
sibling tree 

• The particular tree is encoded in the definition of the 
individual nodes 

The order of traversal matters because of possible state 
changes in the functions 
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Dynamic Trees 

If we use pointers, the structure can be dynamic 

typedef treenode *tree_ptr; 

tree_ptr torso_ptr; 

torso_ptr = malloc(sizeof(treenode)); 

Definition of nodes and traversal are essentially the same 
as before but we can add and delete nodes during 
execution 
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Animation 

Animation is realized by changing the model view matrix 
of each part as a function of time 

 



Reading Assignments 

Chapter 8.6 – 8.11 in Angel & Shreiner 



Procedural Methods 

How can we model 
• Natural phenomena 

–Clouds 
–Terrain 
–Plants 

• Crowd Scenes 
• Real physical processes 

Procedural methods:  

Describe objects in an algorithmic way and generate polygons 
when needed during rendering 
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Procedural Approaches 

• Physically-based models and particle system 
• Describing dynamic behaviors 
o Fireworks 
o Flocking behavior of birds 
o Wave action 

• Language-based models 
• Describing trees or terrain 
• Representing relationships 

• Fractal geometry 



Newtonian Particle 
Particle system is a set of particles 

Each particle is an ideal point mass 
• Gives the positions of particles 
• At each location, we can show an object 

Six degrees of freedom 
• Position 
• Velocity 

Each particle obeys Newtons’ law 
𝐟 =  𝑚𝐚 
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Vectors in 3D 



Particle Equations 

The state of the ith particle is defined by its position 𝐩𝑖 =  
𝑥𝑖
𝑦𝑖
𝑧𝑖

 

Then, we have 6 ordinary differential equations: 

Velocity 𝐯𝑖 =  𝑑𝐩𝑖
𝑑𝑡

=

𝑑𝑥𝑖
𝑑𝑡
𝑑𝑦𝑖
𝑑𝑡
𝑑𝑧𝑖
𝑑𝑡

 

Acceleration 𝐚𝑖 =  𝑑𝐯𝑖
𝑑𝑡

= 1
𝑚𝑖
𝐟𝑖(𝑡) 

The question is how we get the force vector 
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Solution of Particle Systems 

//For a system with n particles 
float time, delta, state[6n], force[3n]; 

state = initial_state(); 

for(time = t0; time<final_time, time+=delta) { 

 //compute forces 

 force =  force_function(state, time); 

 // solve the differential equation 

 state = ode(force, state, time, delta); 

 render(state, time) 

} 
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Force Vector 

Depending on how particles interact with each other 
• Independent Particles O(n)  

–Gravity 
–Drag 

• Coupled Particles O(n) 
–Spring-Mass Systems 
–Meshes 

• Coupled Particles O(n2) 
–Attractive and repulsive forces 
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Simple Forces 

Consider force on a particle i 

         fi = fi(pi, vi) 

Gravity 𝐟𝒈𝒈 = 𝑚𝑖 𝐠 

         𝐠𝑖 =  (0,−𝑔, 0) 

Drag 𝐟𝒅𝒅 = 𝜇𝑖 𝐟𝒏𝒏𝒏𝒏𝒊 

pi(t0), vi(t0) 
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Spring Forces 

Assume each particle has unit mass and is connected to 
its neighbor(s) by a spring 

Keep particles together 

Hooke’s law: force proportional to distance (d = ||p – q||) 
between the points 
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