
Final Exam

Time: 12:30pm – 3:00 pm, Friday, December 9

Closed book and closed notes

Note:
• closed-book and closed-note
• one letter-size cheat sheet, you can use both sides
• coverage: all materials covered discussed in the class

Quiz 2

Take-home

5pm Wednesday, Nov. 30 – 2am Thursday, Dec. 1

Topics

Hierarchical modeling

Procedural methods

Generalizations

Need to deal with multiple children
• How do we represent a more general tree?
• How do we traverse such a data structure?

Animation
• How to use dynamically?
• Can we create and delete nodes during execution?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Humanoid Figure

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Building the Model

Can build a simple implementation using quadrics:
• ellipsoids and cylinders

Access parts through functions drawing individual parts in
their own frames
•torso()
•left_upper_arm()

Matrices describe position of node with respect to its parent
• Mlla positions left lower arm with respect to left upper arm

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree with Matrices

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Display and Traversal

The position of the figure is determined by 11 joint angles
(two for the head and one for each other part)

Display of the tree requires a graph traversal

• Visit each node once
• Display function at each node that describes the part

associated with the node, applying the correct
transformation matrix for position and orientation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transformation Matrices

There are 10 relevant matrices
• M positions and orients entire figure through the

torso which is the root node
• Mh positions head with respect to torso
• Mlua, Mrua, Mlul, Mrul position arms and legs with

respect to torso
• Mlla, Mrla, Mlll, Mrll position lower parts of limbs with

respect to corresponding upper limbs

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Stack-based Traversal

Set model-view matrix to M and draw torso

Set model-view matrix to MMh and draw head

For left-upper arm need MMlua and so on

Rather than recomputing MMlua from scratch or using an
inverse matrix, we can use the matrix stack to store M
and other matrices as we traverse the tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Stack-based Traversal

class MatrixStack {
 int _index; int _size; mat4* _matrices;
 public:
 MatrixStack(int numMatrices = 32):_index(0), _size(numMatrices)
 { _matrices = new mat4[numMatrices]; }
 ~MatrixStack(){ delete[]_matrices; }
 mat4& push(const mat4& m) {
 assert(_index + 1 < _size); _matrices[_index++] = m;
 }
 mat4& pop(void) {
 assert(_index - 1 >= 0); _index--;
 return _matrices[_index];
 }
};

Notes

The position of figure is determined by 11 joint angles
stored in theta[11]

Animate by changing the angles and redisplaying

We form the required matrices using Rotate and
Translate

• Because the matrix is formed using the model-view
matrix, we may want to first push original model-
view matrix on matrix stack

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Traversal Code

mat4 model_view;
matrix_stack mvstack;
figure() {
 //save present model-view matrix
 mvstack.push(model_view);
 torso();
 //update model-view matrix for head
 model_view = model_view*Translate()*Rotate();
 head();
 //recover original model-view matrix
 model_view = mvstack.pop();
 //save it again
 mvstack.push(model_view);

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Traversal Code

…

//update model-view matrix for left upper arm
 model_view = model_view*Translate()*Rotate();
 left_upper_arm();

//recover and save original model-view matrix again
 model_view = mvstack.pop();
 mvstack.push(model_view);

…//rest of code
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Code for Individual Parts

void torso(){

mvstack.push(model_view);

instance = Translate(0.0, 0.5*TORSO_HEIGHT,0.0)

*Scale(TORSO_WIDTH, TORSO_HEIGHT, TORSO_WIDTH);

glUniformMatrix4fv(model_view_loc, 16, GL_TRUE, model_view*instance);

colorcube();

glDrawArrays(GL_TRIANGLES, 0, N);

model_view = mvstack.pop();

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Note: need a push at the beginning and a pop at the end to
isolate this function and protect the other parts

Model view matrix
linked to the shader

Code for Individual Parts

Functions for other parts can be defined similarly as for Torso.

Appendix A.9 provides the full program for the figure with tree
traversal

Analysis

The code describes a particular tree and a particular traversal
strategy

• Can we develop a more general approach?

Note that the sample code does not include state changes,
such as changes to colors

• May also want to use a PushAttrib and PopAttrib to
protect against unexpected state changes affecting later
parts of the code

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Tree Data Structure

The code describes a particular tree and a particular traversal
strategy

• Can we develop a more general approach?

Need a data structure to represent tree and an algorithm to
traverse the tree

We will use a left-child right sibling binary tree
• Uses linked lists
• Each node in data structure has two pointers
• Left: linked list of children
• Right: sibling

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Left-Child Right-Sibling Binary Tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

A

B

C

D

E G F H I

A

B

E C

D

G

H

F

I

Tree node Structure

At each node we need to store
• Pointer to sibling
• Pointer to child
• Pointer to a function that draws the object represented

by the node
• Homogeneous coordinate matrix to multiply on the right

of the current model-view matrix
–Represents changes going from parent to node
– In OpenGL this matrix is a 1D array storing matrix by columns

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Definition of Treenode

typedef struct treenode

{

 mat4 m;

 void (*f)();

 struct treenode *sibling;

 struct treenode *child;

} treenode;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Transformation matrix
Drawing function

Example of Torso and Head Nodes
treenode torso_node, head_node, lua_node, … ;

torso_node.m = RotateY(theta[0]);

torso_node.f = torso;

torso_node.sibling = NULL;

torso_node.child = &head_node;

head_node.m = translate(0.0,TORSO_HEIGHT+0.5*HEAD_HEIGHT,
0.0)*RotateX(theta[1])*RotateY(theta[2]);

head_node.f = head;

head_node.sibling = &lua_node;

head_node.child = NULL;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Preorder Traversal
void traverse(treenode* root)

{

 if(root==NULL) return;

 mvstack.push(model_view);

 model_view = model_view*root->m;

 root->f();

 if(root->child!=NULL) traverse(root->child);

 model_view = mvstack.pop();

 if(root->sibling!=NULL) traverse(root->sibling);

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Notes

We must save model-view matrix before multiplying it
by node matrix

• Updated matrix applies to children of node but not to
siblings which contain their own matrices

The traversal program applies to any left-child right-
sibling tree

• The particular tree is encoded in the definition of the
individual nodes

The order of traversal matters because of possible state
changes in the functions

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Dynamic Trees

If we use pointers, the structure can be dynamic

typedef treenode *tree_ptr;

tree_ptr torso_ptr;

torso_ptr = malloc(sizeof(treenode));

Definition of nodes and traversal are essentially the same
as before but we can add and delete nodes during
execution

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Animation

Animation is realized by changing the model view matrix
of each part as a function of time

Reading Assignments

Chapter 8.6 – 8.11 in Angel & Shreiner

Procedural Methods

How can we model
• Natural phenomena

–Clouds
–Terrain
–Plants

• Crowd Scenes
• Real physical processes

Procedural methods:

Describe objects in an algorithmic way and generate polygons
when needed during rendering

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Procedural Approaches

• Physically-based models and particle system
• Describing dynamic behaviors
o Fireworks
o Flocking behavior of birds
o Wave action

• Language-based models
• Describing trees or terrain
• Representing relationships

• Fractal geometry

Newtonian Particle
Particle system is a set of particles

Each particle is an ideal point mass
• Gives the positions of particles
• At each location, we can show an object

Six degrees of freedom
• Position
• Velocity

Each particle obeys Newtons’ law
𝐟 = 𝑚𝐚

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vectors in 3D

Particle Equations

The state of the ith particle is defined by its position 𝐩𝑖 =
𝑥𝑖
𝑦𝑖
𝑧𝑖

Then, we have 6 ordinary differential equations:

Velocity 𝐯𝑖 = 𝑑𝐩𝑖
𝑑𝑡

=

𝑑𝑥𝑖
𝑑𝑡
𝑑𝑦𝑖
𝑑𝑡
𝑑𝑧𝑖
𝑑𝑡

Acceleration 𝐚𝑖 = 𝑑𝐯𝑖
𝑑𝑡

= 1
𝑚𝑖
𝐟𝑖(𝑡)

The question is how we get the force vector

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Solution of Particle Systems

//For a system with n particles
float time, delta, state[6n], force[3n];

state = initial_state();

for(time = t0; time<final_time, time+=delta) {

 //compute forces

 force = force_function(state, time);

 // solve the differential equation

 state = ode(force, state, time, delta);

 render(state, time)

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Force Vector

Depending on how particles interact with each other
• Independent Particles O(n)

–Gravity
–Drag

• Coupled Particles O(n)
–Spring-Mass Systems
–Meshes

• Coupled Particles O(n2)
–Attractive and repulsive forces

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Forces

Consider force on a particle i

 fi = fi(pi, vi)

Gravity 𝐟𝒈𝒈 = 𝑚𝑖 𝐠

 𝐠𝑖 = (0,−𝑔, 0)

Drag 𝐟𝒅𝒅 = 𝜇𝑖 𝐟𝒏𝒏𝒏𝒏𝒊

pi(t0), vi(t0)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spring Forces

Assume each particle has unit mass and is connected to
its neighbor(s) by a spring

Keep particles together

Hooke’s law: force proportional to distance (d = ||p – q||)
between the points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

	Final Exam
	Quiz 2
	Topics
	Generalizations
	Humanoid Figure
	Building the Model
	Tree with Matrices
	Display and Traversal
	Transformation Matrices
	Stack-based Traversal
	Stack-based Traversal
	Notes
	Traversal Code
	Traversal Code
	Code for Individual Parts
	Code for Individual Parts
	Analysis
	General Tree Data Structure
	Left-Child Right-Sibling Binary Tree
	Tree node Structure
	Definition of Treenode
	Example of Torso and Head Nodes
	Preorder Traversal
	Notes
	Dynamic Trees
	Animation
	Reading Assignments
	Procedural Methods
	Procedural Approaches
	Newtonian Particle
	Particle Equations
	Solution of Particle Systems
	Force Vector
	Simple Forces
	Spring Forces

