
Topics

Hierarchical modeling

• Examine the limitations of linear modeling

–Symbols and instances

Model Complicated Objects

So far, we have discussed modeling simple geometrical
objects.

How can we generate a complicated object, e.g., a robot,
which is made up from several parts?

Construct complex objects from a collection of basic
objects.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instance Transformation

Start with a prototype object (a symbol), e.g.,
• Geometric objects

• Fonts

Each appearance of the object in the model is an instance
• A instance transformation from model frame to world frame by scaling,

rotation, and translation
𝐌 = 𝐓𝐑𝐒

Model frame World frame

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instance Transformation

A model view matrix consists of
• instance transformation and

• a transformation from the world frame to the eye frame

mat4 instance; mat4 model_view;

instance = Translate(dx, dy, dz)*RotateZ(rz)*RotateY(ry)*RotateX(rx)*Scale(sx, sy, sz);

model_view = model_view*instance;

Model frame World frame

eye frame

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing
the parameters for the instance transformation

What’s the problem with the table?

A flat structure - each symbol is processed independently.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Relationships in Car Model

Symbol-instance table does not show relationships
between parts of model

Consider model of car

• Chassis + 4 identical wheels

• Two symbols

Rate of forward motion determined by rotational speed of
wheels

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Structure Through Function Calls

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

Fails to show relationships well

Represent the relationships among different parts
using a graph

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Graphs

Set of nodes and edges (links)

Edge connects a pair of nodes

• Directed or undirected

Cycle: directed path that is a loop

loop

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Graphs: Tree

Tree is a directed acyclic graph (DAG)

A directed graph in which each node (except the root) has
exactly one parent node

• No loops

• May have multiple children

• Leaf or terminal node: no children

root node

leaf node

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree Model of Car

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

DAG Model

If we use the fact that all the wheels are identical, we
get a directed acyclic graph

• Not much different than dealing with a tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling with Trees

Must decide what information to place in nodes and what to
put in edges

Nodes

• What to draw

• Pointers to children

Edges

• May have information on incremental changes to
transformation matrices (can also store in nodes)

A Robot Arm

robot arm
parts in their own

coodinate systems

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

A robot arm consists of two parallelepipeds and a cylinder

Articulated Models

Robot arm is an example of an articulated model

• Parts connected at joints

• Three degrees of freedom described by

–joint angles measured in its local frame

–Angle between the base and the ground

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Relationships in Robot Arm

Base rotates independently

• Single angle determines position

Lower arm attached to base

• Its position depends on rotation of base

• Must also translate relative to base and rotate about
connecting joint

Upper arm attached to lower arm

• Its position depends on both base and lower arm

• Must translate relative to lower arm and rotate about
joint connecting to lower arm

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Required Matrices

Base:

• Rotation of base: Rb

–Apply M = Rb to base

Lower arm:

• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

–Apply M = Rb Tlu Rlu to lower arm

Upper arm:

• Translate upper arm relative to lower arm: Tuu

• Rotate upper arm around joint: Ruu

–Apply M = Rb Tlu Rlu Tuu Ruu to upper arm

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Code for Robot

mat4 ctm;

robot_arm()

{

ctm = RotateY(theta);

base();

ctm *= Translate(0.0, h1, 0.0);

ctm *= RotateZ(phi);

lower_arm();

ctm *= Translate(0.0, h2, 0.0);

ctm *= RotateZ(psi);

upper_arm();

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

h1

h2

OpenGL Code for Robot Base

void base()

{

mat4 instance = (Translate(0.0, 0.5 * BASE_HEIGHT,

0.0) *Scale(BASE_WIDTH, BASE_HEIGHT,BASE_WIDTH));

glUniformMatrix4fv(ModelView, 1, GL_TRUE,

model_view * instance);

glDrawArrays(GL_TRIANGLES, 0, NumVertices);

}

OpenGL Code for Robot

The lower arm and the upper arm are modeled similar to
the base.

All the three parts are modeled based on cubes – the same
symbol.

Only one set of vertices are needed to send to the buffer!

Tree Model of Robot

Note code shows relationships between parts of model

• Can change “look” of parts easily without altering
relationships

Simple example of tree model

Want a general node structure for nodes

-- storing all information in nodes

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Possible Node Structure

Code for drawing part or

pointer to drawing function

A matrix relating node to parent

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

linked list of pointers to children

Generalizations

Need to deal with multiple children

• How do we represent a more general tree?

• How do we traverse such a data structure?

Animation

• How to use dynamically?

• Can we create and delete nodes during execution?

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Humanoid Figure

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Building the Model

Can build a simple implementation using quadrics:

• ellipsoids and cylinders

Access parts through functions drawing individual parts in
their own frames

•torso()

•left_upper_arm()

Matrices describe position of node with respect to its parent

• Mlla positions left lower arm with respect to left upper arm

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Tree with Matrices

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

