
Topics

Bump mapping In OpenGL

Blending and Composition

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Mapping Methods

• Texture mapping
• Environmental (reflection) mapping

–Variant of texture mapping
• Bump mapping

–Solves flatness problem of texture mapping

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Recall the Example of Modeling an Orange

Consider modeling an orange

Texture map a photo of an orange onto a surface
• Captures dimples
• Will not be correct if we move viewer or light
• We have shades of dimples rather than their correct

orientation

Ideally we need to perturb normal across surface of
object and compute a new color at each interior point

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bump Mapping

Perturb normal for each fragment before applying lighting

- Add noise to the normal or

- Store perturbation as textures and lookup a perturbation value in a
texture map

Bump mapping must be performed in shaders

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bump Mapping (Blinn)

Consider a smooth surface
n

p

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

 Rougher Version

n’

p

p’

n

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Finding Bump Maps

pu=[∂x/ ∂u, ∂y/ ∂u, ∂z/ ∂u]T

p(u,v) = [x(u,v), y(u,v), z(u,v)]T

pv=[∂x/ ∂v, ∂y/ ∂v, ∂z/ ∂v]T

n = (pu × pv) / | pu × pv |

Assume a point P on a parametric surface

The surface normal at point P is
pu

pv
n

pu and pv determines a tangent plane

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Displacement Function

p’ = p + d(u,v) n
d(u,v) is the bump or displacement function, |d(u,v)| << 1

Intuitively, we can create a perturbed point along the
normal direction with a displacement d

However, this process is slow

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Perturbed Normal

n’ = p’u × p’v
p’u = pu + (∂d/∂u)n + d(u,v)nu

p’v = pv + (∂d/∂v)n + d(u,v)nv

If d is small, we can neglect last term

Instead, we can calculate perturbed normal

nu=[∂nx/ ∂u, ∂ny/ ∂u, ∂nz/ ∂u]T

nv=[∂nx/ ∂v, ∂ny/ ∂v, ∂nz/ ∂v]T

Approximating the Perturbed Normal

n’ = p’u × p’v

≈ n + (∂d/∂u)n × pv + (∂d/∂v)n × pu
The vectors n × pv and n × pu lie in the tangent plane
The normal is displaced in the tangent plane
n’, p’u and p’v form a local coordinate space – Tangent Space

Tangent Space and Normal Matrix

However, n’, p’u and p’v may be not unit vectors and not
orthogonal to each other

Need to get an orthogonal basis

Normalized normal: 𝐦 = 𝐧𝐧
𝐧𝐧

Tangent vector: 𝐭 = 𝐩𝐩𝑢
𝐩𝐩𝑢

Binormal vector: 𝐛 = 𝐦 × 𝐭

A transformation matrix is used to transform the view and
light to tangent space

𝐌 = 𝐭 𝐛 𝐦 𝐭

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Normal Maps

Suppose that we start with a function d(u,v)

We can sample it to form an array D=[dij]

Then ∂d/ ∂u ≈ dij – di-1,j

 and ∂d/ ∂v ≈ dij – di,j-1

The arrays ∂d/ ∂u and ∂d/ ∂v can be precomputed and stored
as a texture called normal map used by fragment shader with
a smapler.

Example of Normal Maps

Shreiner et al: OpenGL Programming Guide (Version 4.3)

Bump Mapping vs Geometric Model

Which one is from bump mapping?

Bump mapping does not modify the shape of the object

https://en.wikipedia.org/wiki/Bump_mapping

Bump mapping Geometric model

Smooth outline

Example

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Single Polygon and a Rotating Light Source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

How to do this?

The problem is that we want to apply the perturbation at all
points on the surface

Cannot solve by vertex lighting (unless polygons are very small)

Really want to apply to every fragment in a fragment shader

Angel’s Example of Applying Bump Mapping
on A Simple Polygon

// Define the object – the simple polygon
point4 points[6];
point2 tex_coord[6];
void mesh() // the polygon is formed by two triangles
{
 point4 vertices[4] = { point4(0.0, 0.0, 0.0, 1.0),
 point4(1.0, 0.0, 0.0, 1.0),
 point4(1.0, 0.0, 1.0, 1.0),
 point4(0.0, 0.0, 1.0, 1.0)
 };
 points[0] = vertices[0]; tex_coord[0] = point2(0.0, 0.0);
 points[1] = vertices[1]; tex_coord[1] = point2(1.0, 0.0);
 points[2] = vertices[2]; tex_coord[2] = point2(1.0, 1.0);
 points[3] = vertices[2]; tex_coord[3] = point2(1.0, 1.0);
 points[4] = vertices[3]; tex_coord[4] = point2(0.0, 1.0);
 points[5] = vertices[0]; tex_coord[5] = point2(0.0, 0.0);
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon

// Generate the displacement – a small square in the center
const int N = 256;
float data[N+1][N+1];
vec3 normals[N][N];
for(int i = 0; i < N+1; i++)
 for(int j = 0; j < N+1; j++)
 data[i][j]=0.0;
for(int i = N/4; i < 3*N/4; i++)
 for(int j = N/4; j < 3*N/4; j++)
 data[i][j] = 1.0;

// Generate the Normal map
for(int i = 0;i < N; i++)
 for(int j = 0;j < N; j++)
 {
 vec4 n = vec3(data[i][j] - data[i+1][j], 0.0, data[i][j] -data[i][j+1]);
 normals[i][j] = 0.5*normalize(n) + 0.5;
 }

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon

The surface normal of a flat polygon is a constant  the
tangent vector is constant and can be any vectors on the
plane of the polygon

We need a normal matrix, which is the inverse transpose
of the upper-left 3x3 submatrix of the model view matrix

The normal matrix transforms a vector in the object frame
to the eye frame and can be precomputed.

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon – Vertex Shader

in vec2 texcoord;
in vec4 vPosition;

uniform vec3 Normal;
uniform vec4 LightPosition;
uniform mat4 ModelView;
uniform mat4 Projection;
uniform mat4 NormalMatrix;
uniform vec3 objTangent; // tangent vector

out vec3 L; /* light vector in texture-space coordinates */
out vec3 V; /* view vector in texture-space coordinates */
out vec2 st; /* texture coordinates */

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon – Vertex Shader

void main()
{
 gl_Position = Projection*ModelView*vPosition;
 st = texcoord;

 vec3 eyePosition = vec3(ModelView*vPosition);
 vec3 eyeLightPos = LightPosition.xyz;

 /* normal, tangent, and binormal in eye coordinates */
 vec3 N = normalize(NormalMatrix*Normal);
 vec3 T = normalize(NormalMatrix*objTangent);
 vec3 B = cross(N, T);

 /* Change the light vector to the tangent space */
 L.x = dot(T, eyeLightPos-eyePosition);
 L.y = dot(B, eyeLightPos-eyePosition);
 L.z = dot(N, eyeLightPos-eyePosition);
 L = normalize(L);
…

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon – Vertex Shader

…

/* Change the view vector to the tangent space */

V.x = dot(T, -eyePosition);

V.y = dot(B, -eyePosition);

V.z = dot(N, -eyePosition);

V = normalize(V);

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Angel’s Example of Applying Bump Mapping
on A Simple Polygon – Fragment Shader

in vec3 L;
in vec3 V;
in vec2 st;
uniform vec4 DiffuseProduct;
uniform sampler2D texMap;
void main()
{
 vec4 N = texture(texMap, st);
 vec3 NN = normalize(2.0*N.xyz-1.0);
 vec3 LL = normalize(L);
 float Kd = max(dot(NN.xyz, LL), 0.0);
 gl_FragColor = Kd*DiffuseProduct;
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Opacity and Transparency

Opaque surfaces permit no light to pass through

Transparent surfaces permit all light to pass

Translucent surfaces pass some light

 translucency = 1 – opacity (α)

opaque surface α =1

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Writing Model

Use A component of RGBA (or RGBα) color to store opacity

During rendering we can expand our writing model to use
RGBA values

Color Buffer

destination
component

blend

destination blending
 factor

source blending factor source
component

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Blending Equation

We can define source and destination blending factors for each
RGBA component

 s = [sr, sg, sb, sα]

 d = [dr, dg, db, dα]

Suppose that the source and destination colors are

 b = [br, bg, bb, bα]

 c = [cr, cg, cb, cα]

Blend as c’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , bα sα+ cα dα]

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Blending and Compositing

Must enable blending and pick source and destination factors

 glEnable(GL_BLEND)

 glBlendFunc(source_factor,destination_factor)

Only certain factors supported, e.g.,
•GL_ZERO, GL_ONE
•GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
•GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
• See Redbook for complete list

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

Suppose that we start with the opaque background color
(R0,G0,B0,1)

• This color becomes the initial destination color

We now want to blend in a translucent polygon with color
(R1,G1,B1,α1)

Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA
as the source and destination blending factors

 R’
1 = α1 R1 +(1- α1) R0, …

Note this formula is correct if polygon is either opaque or
transparent

The composition method
discussed earlier

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Clamping and Accuracy

All the components (RGBA) are clamped and stay in the
range (0,1)

However, in a typical system, RGBA values are only stored
to 8 bits

• Can easily lose accuracy if we add many components together
• Example: add together n images contributing equally

–Divide all color components by n to avoid clamping
–Blend with source factor = 1/n, destination factor = 1
–But division by n loses bits

Recent frame buffers supports floating point arithmetic and can
avoid the problem

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Order Dependency

Is this image correct?
• Probably not
• Polygons are rendered in the order
they pass down the pipeline
• Blending functions are order
dependent

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Opaque and Translucent Polygons

Suppose that we have a group of polygons some of which
are opaque and some translucent

How do we use hidden-surface removal?

Opaque polygons block all polygons behind them and affect
the depth buffer

Translucent polygons should not affect depth buffer
• Render with glDepthMask(GL_FALSE) which makes

depth buffer read-only

Sort polygons first to remove order dependency

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fog Effect

We can composite with a fixed color and have the blending
factors depend on depth

• Simulates a fog effect

Blend source color Cs and fog color Cf by

 Cs’=f Cs + (1-f) Cf

f is the fog factor, which is a function of the depth
• Exponential
• Gaussian
• Linear (depth cueing)

Deprecated but can recreate

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Fog Functions

Reading Assignment

Chapter 7.11 and 7.12 in Angel & Shereiner

Chapter 6 and 8 in Shreiner et al: OpenGL Programming Guide
(Version 4.3)

	Topics
	Mapping Methods
	Recall the Example of Modeling an Orange
	Bump Mapping
	Bump Mapping (Blinn)
		Rougher Version
	Finding Bump Maps
	Displacement Function
	Perturbed Normal
	Approximating the Perturbed Normal
	Tangent Space and Normal Matrix
	Normal Maps
	Example of Normal Maps
	Bump Mapping vs Geometric Model
	Example
	How to do this?
	Angel’s Example of Applying Bump Mapping on A Simple Polygon
	Angel’s Example of Applying Bump Mapping on A Simple Polygon
	Angel’s Example of Applying Bump Mapping on A Simple Polygon
	Angel’s Example of Applying Bump Mapping on A Simple Polygon – Vertex Shader
	Angel’s Example of Applying Bump Mapping on A Simple Polygon – Vertex Shader
	Angel’s Example of Applying Bump Mapping on A Simple Polygon – Vertex Shader
	Angel’s Example of Applying Bump Mapping on A Simple Polygon – Fragment Shader
	Opacity and Transparency
	Writing Model
	Blending Equation
	OpenGL Blending and Compositing
	Example
	Clamping and Accuracy
	Order Dependency
	Opaque and Translucent Polygons
	Fog Effect
	Fog Functions
	Reading Assignment

