Announcement

Homework 3 has been posted.
Due Wednesday, Nov. 9

Project 2

vec4 light_position(1.0, 1.0, 1.0, 0.0);
vec4 light_ambient(0.1, 0.1, 0.1, 1.0);
vec4 light_diffuse(1.0, 1.0, 1.0, 1.0); vec4 light_specular(1.0, 1.0, 1.0, 1.0); vec4 material_ambient($0.5,0.0,0.0,1.0$); vec4 material_diffuse($0.5,0.0,0.0,1.0$);
vec4 material_specular($0.5,0.0,0.0,1.0$);
float material_shininess = 100;

Project 2: Varying Light Position

vec4 light_position(1.0, 1.0, 1.0, 0.0);
 vec4 light_position(-1.0, 1.0, 1.0, 0.0);

© © Teapot

* () Teapot

How to Choose Light Position

- Ambient term is a constant
- Diffuse term $\mathbf{I}_{d}=\mathbf{k}_{d} \underbrace{1 \cdot \mathrm{n}}_{\downarrow} \mathbf{L}_{d}$

Should be positive

- Specular term $\mathbf{I}_{s}=k_{s} L_{s} \max \left((\mathbf{n} \cdot \mathbf{h})^{\beta}, 0\right)$

Should be positive

Project 2: Varying Material Shininess

float material_shininess = 100;

LookAt Function

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);
Usually, "at" is the center of the object
vec4 at(0.0, 0.0, 0.0, 1.0);
Assuming the viewer is upright
vec4 up(0.0, 1.0, 0.0, 0.0);
You need to choose "eye" appropriately

Project 2: Varying Eye

©O© Teapot

Perspective()

Perspective(fovy, aspect, near, far) often provides a better interface

Topics

From vertices to fragments

Filling in the Frame Buffer

Fill at end of pipeline: coloring a point with the inside color if it is inside the polygon

- Convex Polygons only
- Nonconvex polygons assumed to have been tessellated
- Shades (colors) have been computed for vertices (Gouraud shading)
- Scanline fill
- Flood fill

Scanline Fill: Using Interpolation

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ specified by glColor or by vertex shading C_{4} determined by interpolating between C_{1} and C_{2} C_{5} determined by interpolating between C_{2} and C_{3} Interpolate points between C_{4} and C_{5} along span

C_{3}

E. Angel and D. Shreiner: Interactive

Comnutar Cronhice 6F $\cap \Lambda$ ddicon

Scan Line Fill

Can also fill by maintaining a data structure of all intersections of polygons with scan lines

- Sort by scan line
- Fill each span

vertex order generated by vertex list

desired order
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Data Structure

Insertion sort is applied on the x-coordinates for each scanline

E. Angel and D. Shreiner: Interactive

Comnutor Cronhinc 6E A Addicon

Flood Fill

Starting with an unfilled polygon, whose edges are rasterized into the buffer, fill the polygon with inside color (BLACK)

Fill can be done recursively if we know a seed point located inside. Color the neighbors to (BLACK) if they are not edges.

```
flood_fill(int x, int y) {
    if(read_pixel(x,y)= = WHITE) {
    write_pixel(x,y,BLACK);
    flood_fill(x-1, y);
    flood_fill(x+1, y);
    flood_fill(x, y+1);
    flood_fill(x, y-1);
} }
```


E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Back-Face Removal (Culling)

Only render front-facing polygons

Reduce the work by hidden surface removal
Face is visible iff $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
equivalently
$\cos \theta \geq 0$ or $\underbrace{\mathbf{v} \mathbf{n} \geq 0}_{\text {Easy tô compute }}$

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Back-Face Removal (Culling)

- After transformation (projection normalization), the view is orthographic

$$
\mathbf{v}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)^{\mathrm{T}}
$$

- The coordinates are normalized device coordinates
- If the plane of face has form

$$
a x+b y+c z+d=0
$$

Need only test the sign of c
E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012
E. Angel and D. Shreiner: Interactive Comp
Graphics 6E © Addison-Wesley 2012

Why?

$$
\mathbf{n}=\left[\begin{array}{l}
a \\
b \\
c \\
0
\end{array}\right], d=P_{0} \cdot \mathbf{n}
$$

In OpenGL we can simply enable culling but may not work correctly if we have nonconvex objects

Hidden Surface Removal

Object-space algorithms:

- Consider the relationships between objects
- Reduce number of polygons
- Works better for a smaller number of objects

Image-space algorithms:

- Ray casting
- Works at fragment/pixel level
- Most popular

Hidden Surface Removal

Object-space approach: use pairwise testing between polygons (objects)

partially obscuring

can draw independently

Worst case complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for n polygons

Painter's Algorithm

Render polygons a back to front order so that polygons behind others are simply painted over

B behind A as seen by viewer

Fill B then A

Back-to-front rendering

A depth sorting is needed!

Depth Sort

Requires ordering of polygons first

- Object-oriented hidden-surface removal
- O(n log n) calculation for ordering
- Not every polygon is either in front or behind all other polygons

Order polygons and deal with

 easy cases first, harder later Polygons sorted by distance from COP

Easy Cases

Case 1: A lies behind all other polygons

- Minimum depth of A is larger than maximum depth of the others
- Render A first

Case 2: Polygons overlap in z but not in either x or y

- Can render independently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hard Cases: Overlap in All Directions

Case 3: Two polygons overlap All vertices of one polygon are on one side of the other

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hard Cases: Overlap in All Directions

Three or more polygons overlap

Need to divide at least one of the polygons to several parts and find the depth order of the new polygons

cyclic overlap

penetration

Visibility Testing

In many realtime applications, such as games, we want to eliminate as many objects as possible within the application

- Reduce burden on pipeline
- Reduce traffic on bus

Partition space with Binary Spatial Partition (BSP) Tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Example

top view

The plane of A separates B and C from D, E and F

BSP Tree

Can continue recursively

- Plane of C separates B from A
- Plane of D separates E and F

Can put this information in a BSP tree

- Use for visibility and occlusion testing

Image Space Approach

Look at each projector (nm for an $n \times m$ frame buffer) and find the closest among k polygons to COP

- Complexity O(nmk)
- Ray tracing
- z-buffer

z-Buffer Algorithm

Use a buffer called the z or depth buffer to store the depth of the closest object at each pixel found so far

As we render each polygon, compare the depth of each pixel to depth in z buffer

If less, place shade of pixel in color buffer and update z buffer
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan-Line Algorithm

Can combine shading and hidden surface removal through scan line algorithm

scan line i: no need for depth information, can only be in no or one polygon
scan line j: need depth information only when in more than one polygon
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan-Line Algorithm

A polygon is on a plane $a x+b y+c z+d=0$.
Two points on the plane with
$\Delta x=x_{2}-x_{1}$
$\Delta y=y_{2}-y_{1}$
$\Delta z=z_{2}-z_{1}$
Then the plane equation becomes $a \Delta x+b \Delta y+c \Delta z=0$

Scan-Line Algorithm

As we move across a scan line, the depth changes satisfy

$$
a \Delta x+b \Delta y+c \Delta z=0
$$

Along scan line, in screen space
$\Delta \mathrm{x}=1$
$\Delta y=0$

$$
\Delta \mathrm{z}=-\frac{a}{c} \Delta \mathrm{x}
$$

Implementation

Need a data structure to store

- Flag for each polygon (inside/outside)
- Incremental structure for scan lines that stores which edges are encountered
- Parameters for planes

Aliasing

Ideal rasterized line should be 1 pixel wide

Choosing best y for each x (or visa versa) produces aliased raster lines

Antialiasing by Area Averaging

Shade each pixel by the percentage of the area covered by the ideal line

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygon Aliasing

Aliasing problems can be serious for polygons

- Jaggedness of edges
- Small polygons neglected
- Color of pixel is determined by the polygor closest to the COP

Composing the color based on the weighted average color of all the polygons

All three polygons should contribute to color

Reading Assignment

Chapter 6.13 of Angel \& Shreiner
Chapter 7 of Shreiner et al

Buffers

Introduce additional OpenGL buffers
Learn to read from buffers
Learn to use blending

Buffer

Define a buffer by its spatial resolution ($\mathrm{n} \times \mathrm{m}$) and its depth (or precision) k, the number of bits/pixel

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Frame Buffer

64 bits for front and back buffers

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Buffers

Color buffers can be displayed

- Front
- Back
- Stereo

Depth

Stencil

- Holds masks (per-pixel integers) to control rendering

Most RGBA buffers 8 bits per component

Writing in Buffers

Conceptually, we can consider all of memory as a large two-dimensional array of pixels

In practice, we read and write rectangular blocks of pixels - Bit block transfer (bitblt) operations

The frame buffer is part of this memory

writing into frame buffer
frame buffer
(destination)

Writing in Buffers

Write an nxm source block with

Lower-left corner of destination block
write_block(source, $n, m, \underbrace{u, ~ d e s t i n a t i o n, ~}_{r, ~ y} u, v)$;
Lower-left cnrnor of source bls

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Writing Model

s: source bit
d: destination bit
Read destination pixel before writing source

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bit Writing Modes

Source and destination bits are combined bitwise
16 possible functions (one per column in table)
0 and 15: clear mode; 3 and 7: write mode

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bit Writing Modes

Background color: white
Foreground color: black

Mode 3

OR

Mode 7

XOR (Exclusive OR) Mode

Property of XOR: return the original value if apply XOR twice $d=(d \oplus s) \oplus s$

XOR is especially useful for swapping blocks of memory such as menus that are stored off screen (backing store)

If S represents screen and M represents a menu, the sequence

For example, $\mathrm{S}=1010, \mathrm{M}=1100$
$\mathrm{S}=\mathrm{S} \oplus \mathrm{M}=0110$
$\mathrm{M}=\mathrm{S} \oplus \mathrm{M}=1010$
$\mathrm{S}=\mathrm{S} \oplus \mathrm{M}=1100$
swaps S and M

