
Topics 

From vertices to fragments 



From Vertices to Fragments 

Assign a color to every pixel 

Pass every object through the system 

Required tasks: 
• Modeling 
• Geometric processing 
• Rasterization 
• Fragment processing 

clipping 



Clipping and Visibility 

Clipping has much in common with hidden-surface 
removal 

In both cases, we are trying to remove objects that are 
not visible to the camera 

Often we can use visibility or occlusion testing early in 
the process to eliminate as many polygons as possible 
before going through the entire pipeline 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Clipping 2D Line Segments 

Brute force approach: compute intersections with all 
sides of clipping window 

• Inefficient: one division per intersection 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Cohen-Sutherland Algorithm 

Idea: eliminate as many cases as possible without computing 
intersections 

For each endpoint, define an outcode 
 

 

 

 

Computation of outcode requires at most 4 subtractions 

b0b1b2b3 
b0 = 1 if y > ymax, 0 otherwise 
b1 = 1 if y < ymin, 0 otherwise 
b2 = 1 if x > xmax, 0 otherwise 
b3 = 1 if x < xmin, 0 otherwise 



Using Outcodes 
Consider the 5 cases below 

AB: outcode(A) = outcode(B) = 0 
• Accept line segment 

CD: outcode (C) = 0, outcode(D) ≠ 0 
• Compute intersection 
• Location of 1 in outcode(D) determines which edge to intersect with 

Both outcodes are nonzero for other 3 cases, perform AND 
• EF: outcode(E) AND outcode(F) (bitwise) ≠ 0 

–reject 
• GH and IJ: outcode(G) AND outcode(H) =0 

–Shorten line segment by intersecting with one of sides of 
window and reexecute algorithm 



Efficiency 

Inefficient when code has to be reexecuted for line 
segments that must be shortened in more than one 
step 

For the last case, use Liang-Barsky Clipping  



Liang-Barsky Clipping 

Consider the parametric form of a line segment 

 

 

 
 

We can distinguish between the cases by looking at the 
ordering of the values of α where the line determined by the 
line segment crosses the lines that determine the window 

𝑃 𝛼 = 𝑥 𝛼
𝑦 𝛼 =  (1 − 𝛼)𝑃1 + 𝛼𝑃2   1 ≥𝛼≥ 0 

𝑃 𝛼 = 𝑥 𝛼
𝑦 𝛼 = 1 − 𝛼 𝑥1 + 𝛼𝑥2

1 − 𝛼 𝑦1 + 𝛼𝑦2
 

P1 

P2 

𝑃(𝛼)  



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © 
Addison-Wesley 2012 

Liang-Barsky Clipping 

When the line is not parallel to a side of the window, compute 
intersections with the sides of window 

For example, 𝛼𝟒 is the parameter for the intersection with the 
right side 𝑥 = 𝑥𝑚𝑚𝑚 ⟹ 𝛼𝟒 = 𝑚𝑚𝑚𝑚−𝑚1

𝑚2−𝑚1
.  

In (a): α4 > α3 > α2 > α1 
• Intersect right, top, left, bottom 
• shorten 

In (b): α4 > α2 > α3 > α1  
• Intersect both right and left before intersecting top and bottom 
• reject 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Advantages 

Using values of α, we do not have to use algorithm 
recursively as with C-S 

Can be extended to 3D 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Clipping and Normalization 

General clipping in 3D requires intersection of line segments 
against arbitrary plane 

Example: oblique view 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Plane-Line Intersections 

)(
)(

12

1

ppn
ppn

a o

−•
−•

=



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Normalized Form 

before normalization after normalization 

Normalization is part of viewing (pre clipping). After 
normalization, we clip against sides of right parallelepiped 
 
Typical intersection calculation now requires only 
a floating point subtraction, e.g. is x > xmax ? 

top view 



Polygon Clipping 

Not as simple as line segment clipping 
• Clipping a line segment yields at most one line segment 
• Clipping a polygon can yield multiple polygons 

–Increase number of polygons 

 

 

 

 

Clipping a convex polygon can yield at most one other 
polygon 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Tessellation and Convexity 

One strategy is to replace nonconvex (concave) polygons 
with a set of triangular polygons (a tessellation) 

 

 

 

 

Apply line-segment clipping algorithms to each edge of the 
polygon 

 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Clipping as a Black Box 

Can consider line segment clipping as a process that takes in 
two vertices and produces either no vertices or the vertices of a 
clipped line segment 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Pipeline Clipping of Line Segments 

Clipping against each side of window is independent of 
other sides 

• Can use four independent clippers in a pipeline 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

For example, 
𝑥3 = 𝑥1 + (𝑦𝑚𝑚𝑚 − 𝑦1)

𝑥2 − 𝑥1
𝑦2 − 𝑦1

 

𝑦3 = 𝑦𝑚𝑚𝑚 



Pipeline Clipping of Polygons 
For all edges of polygon, run the pipeline 
 

 

 

 

 

Three dimensions: add front and back clippers 

Not efficient for many-sided polygon 

 
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Bounding Boxes 

Rather than doing clipping on a complex polygon, we can use 
an axis-aligned bounding box or extent 

• Smallest rectangle aligned with axes that encloses the 
polygon 

• Simple to compute: max and min of x and y 
• Avoid detailed clipping for all cases 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Bounding boxes 

Can usually determine accept/reject based 
only on bounding box 

reject 

accept 
requires detailed 
    clipping 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 



Rasterization 

After clipping, the remaining primitives are inside the view volume 

The color buffer is an 𝑛 × 𝑚 array, (0,0) for the lower-left corner 
• Pixels are discrete 
• Square centered at halfway between integers in OpenGL  

Rasterization (scan conversion) 
• Determine which pixels are inside primitive specified by a set 

of vertices 
• Produces a set of fragments 
• Fragments have a location (pixel location) in the buffer and 

other attributes such color and texture coordinates that are 
determined by interpolating values at vertices 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison

  

Scan Conversion of Line Segments 

Start with line segment in window coordinates with integer 
values for endpoints 

Assume implementation has a write_pixel function 

y = mx + h 

x
ym

∆
∆

=



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

DDA Algorithm 

Digital Differential Analyzer 
• DDA was a mechanical device for numerical solution of 

differential equations 
• Line 𝑦 = 𝑚𝑥 +  ℎ satisfies differential equation 

𝑑𝑦
𝑑𝑥

 =  𝑚 =  
Δ𝑦
Δ𝑥

=  
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

Along scan line ∆x = 1 

For(x=x1; x<=x2,ix++) { 
   y+=m; 
  write_pixel(x, round(y), line_color) 
} 

two endpoints 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison

  

Problem 

DDA = for each x plot pixel at closest y 
• Problems for steep lines 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Using Symmetry 

Use for 𝟎 ≤  𝑚 ≤ 𝟏, for each x plot pixel at closest y 

For m > 1, swap role of x and y 
• For each y, plot closest x 

 
 
 
 
 
 
 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Bresenham’s Algorithm 

𝑚 is a floating point 

DDA requires one floating point addition per step 

Bresenham’s algorithm eliminates all fp calculations  
• Standard algorithm for rasterizers 

Consider only 0 ≤  𝑚 ≤ 1 , other cases by symmetry 

Assume pixel centers are at half integers 

If we start at a pixel that has been written, there are only 
two candidates for the next pixel to be written into the 
frame buffer 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Candidate Pixels 

last pixel 

candidates 

Note that line could have 
passed through any 
part of this pixel 

0 ≤  𝑚 ≤ 1 

- 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison-

Wesley 2012 

Decision Variable 

- 

𝑑 = (𝑥2 − 𝑥1)(𝑎 − 𝑏) 
= ∆𝑥(𝑎 − 𝑏) 

d is an integer, why? 
d < 0 use upper pixel 
d > 0 use lower pixel 

𝑎 and 𝑏 are the distances between the line and the 
upper/lower candidate  

Replacing floating-point with fixed-
point operations 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Incremental Form 

Look at dk, the value of the decision variable at 𝑥 =  𝑘 + 0.5 

More efficient if we compute dk+1 incrementally from dk 

If dk >0,       dk+1= dk –2∆y;  
otherwise, dk+1= dk –2(∆y-∆x)    

• For each x, we need do only an addition and a test 
• A single instruction on graphics chips 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison-

Wesley 2012 

Polygon Rasterization 

Polygon properties: 
• Simple: edges cannot cross, i.e., only meet at the end points 
• Convex: All points on line segment between two points in a 

polygon are also in the polygon 
• Flat: all vertices are in the same plane 

How to tell inside from outside – inside-outside 
testing 

• Convex easy 
• Nonsimple difficult 
• Odd even test: count edge crossings with scanlines 

– Inside: odd crossings 
–Outside: even crossings 

 

odd-even fill 

𝑃𝑜𝑜𝑜 

𝑃𝑖𝑖 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Winding Test: Winding Number 

Traverse the edges of the polygon from any starting vertex and 
going around the edge in a particular direction until reaching 
the starting point 

Winding number: number of times of a point encircled by the 
edges 

 

 

 

 

Alternate definition of inside: inside if winding number ≠ 0 

winding number = 2 

winding number = 1 

winding number = 0 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Filling in the Frame Buffer 

Fill at end of pipeline: coloring a point with the inside 
color if it is inside the polygon 

• Convex Polygons only 
• Nonconvex polygons assumed to have been tessellated 
• Shades (colors) have been computed for vertices 

(Gouraud shading) 
• Scanline fill 
• Flood fill 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison

  

Scanline Fill: Using Interpolation 

span 

C1 

C3 

C2 

C5 

C4 
scan line 

C1 C2 C3 specified by glColor or by vertex shading 
C4 determined by interpolating between C1 and C2 
C5 determined by interpolating between C2 and C3 
Interpolate points between C4 and C5 along span  
 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Scan Line Fill  

Can also fill by maintaining a data structure of 
all intersections of polygons with scan lines 

• Sort by scan line 
• Fill each span 

vertex order generated  
      by vertex list desired order 



E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison

  

Data Structure 

Insertion sort is applied on the x-coordinates for each scanline 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Flood Fill 

Starting with an unfilled polygon, whose edges are rasterized 
into the buffer, fill the polygon with inside color (BLACK) 

Fill can be done recursively if we know a seed point located 
inside. Color the neighbors to (BLACK) if they are not edges. 

flood_fill(int x, int y) { 
    if(read_pixel(x,y)= = WHITE) { 
       write_pixel(x,y,BLACK); 
       flood_fill(x-1, y); 
       flood_fill(x+1, y); 
       flood_fill(x, y+1); 
       flood_fill(x, y-1); 
}   } 



Back-Face Removal (Culling) 

Only render front-facing polygons 

Reduce the work by hidden surface removal 

Face is visible iff  −𝜋
2
≤ 𝜃 ≤ 𝜋

2
 

equivalently   

cos θ  ≥ 0 or 𝐯 • 𝐧 ≥ 0 

 

θ 

Easy to compute 

E. Angel and D. Shreiner: Interactive Computer 
Graphics 6E © Addison-Wesley 2012 


	Topics
	From Vertices to Fragments
	Clipping and Visibility
	Clipping 2D Line Segments
	Cohen-Sutherland Algorithm
	Using Outcodes
	Efficiency
	Liang-Barsky Clipping
	Liang-Barsky Clipping
	Advantages
	Clipping and Normalization
	Plane-Line Intersections
	Normalized Form
	Polygon Clipping
	Tessellation and Convexity
	Clipping as a Black Box
	Pipeline Clipping of Line Segments
	Pipeline Clipping of Polygons
	Bounding Boxes
	Bounding boxes
	Rasterization
	Scan Conversion of Line Segments
	DDA Algorithm
	Problem
	Using Symmetry
	Bresenham’s Algorithm
	Candidate Pixels
	Decision Variable
	Incremental Form
	Polygon Rasterization
	Winding Test: Winding Number
	Filling in the Frame Buffer
	Scanline Fill: Using Interpolation
	Scan Line Fill 
	Data Structure
	Flood Fill
	Back-Face Removal (Culling)

