
Midterm Statistics

Highest: 106

Median: 93

Mean: 92.52

Standard Deviation: 8.61

Topics

Lighting and shading

Shading in OpenGL

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading

Why does the image of a real sphere look like

Light-material interactions cause each point to have
a different color or shade

Need to consider
• Light sources
• Material properties
• Location of viewer
• Surface orientation

4 Key elements of image
formation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Phong Model

Uses four unit vectors to calculate a color on a surface
• Surface normal 𝐧
• To viewer 𝐯
• To light source 𝐥
• Perfect reflector 𝐫

Normal
To viewer

To light source

Perfect
reflection

Phong Model

A simple model that can be computed rapidly

Each light source has three components

• Ambient

• Diffuse

• Specular

Shreiner et al

A

A+D

A+D+S

Point light source

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Computation of Vectors

Need to compute the four vectors
• Surface normal 𝐧
• To viewer 𝐯
• To light source 𝐥
• Perfect reflector 𝐫

Simplifications can apply, e.g.
• Normal can be the same for all points on

a flat polygon

• Light direction is the same for all points

if the light is far away from the surface

Normal
To viewer

To light source

Perfect
reflection

Computation of Vectors

l and v are specified by the application

h can be computed from l and v

How to calculate n?

Depending on surface

OpenGL leaves determination of normal to application,
e.g., the obj file contains the normals

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-

Wesley 2012

Plane Normals

Plane can be determined by three points P1, P2, P3 or normal n and P0

Given three noncolinear points, e.g., the three vertices of a triangle
𝑃1, 𝑃2, and 𝑃3, the outfacing normal can be obtained by

𝐧 =

(𝑃2 − 𝑃1) × (𝑃0−𝑃2)
(𝑃2 − 𝑃1) × (𝑃0−𝑃2)

Order of vectors is important!

p0

p1

p2

n

p

E. Angel and D. Shreiner:
Interactive Computer Graphics

6E © Addison-Wesley 2012

Normal to Sphere

How we compute normals for curved surfaces?

Depend on how we model the surface.

Implicit function of a unit sphere centered at the origin
𝑓 𝑥,𝑦. 𝑧 = 𝑥2 + 𝑦2 +𝑧2 −1 = 0

Or in vector form
𝑓 𝐩 = 𝐩 ∙ 𝐩 − 1 = 0

Normal is given by gradient

𝐧𝐧 =

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧

=
2𝑥
2𝑦
2𝑧

= 2𝐩 𝐧 =
𝐧𝐧
𝐧𝐧

= 𝐩

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-Wesley

2012

Parametric Form

Parametric form of a sphere, −𝜋
2

< 𝑢, 𝑣 < 𝜋
2

Normal calculated from the tangent plane

Tangent plane determined by vectors

𝜕𝐩
𝜕𝑢

=

𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

𝜕𝐩
𝜕𝑣

=

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣

𝑥 = 𝑥(𝑢, 𝑣) = cos 𝑢 sin 𝑣
𝑦 = 𝑦(𝑢, 𝑣) = cos 𝑢 cos 𝑣
𝑧 = 𝑧(𝑢, 𝑣) = sin 𝑢

independent

Normal given by cross product

𝐧 =
𝜕𝐩
𝜕𝑢 × 𝜕𝐩

𝜕𝑣
𝜕𝐩
𝜕𝑢 × 𝜕𝐩

𝜕𝑣

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-Wesley

2012

Parametric Form

Parametric form of a sphere, −𝜋
2

< 𝑢, 𝑣 < 𝜋
2

Tangent plane determined by vectors

𝑥 = 𝑥(𝑢, 𝑣) = cos 𝑢 sin 𝑣
𝑦 = 𝑦(𝑢, 𝑣) = cos 𝑢 cos 𝑣
𝑧 = 𝑧(𝑢, 𝑣) = sin 𝑢

Normal given by cross product 𝐧′ = cos𝑢
cos𝑢 sin 𝑣
cos𝑢 cos 𝑣

sin𝑢
= (cos𝑢)𝐩

𝜕𝐩
𝜕𝑢

=

𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

=
− sin𝑢 𝑠𝑠𝑠 𝑣
−𝑠𝑠𝑠 𝑢 𝑐𝑐𝑠 𝑣

cos𝑢

𝜕𝐩
𝜕𝑣

=

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣

=
cos𝑢 cos𝑣
−cos𝑢 sin𝑣

0

𝐧 = 𝐩

General Case

We can compute parametric normals for other simple cases
• Quadrics
• Parameteric polynomial surfaces

–Bezier surface patches (Chapter 10)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-

Wesley 2012

Recall Blinn-Phong Model

For each light source and each color component, the
Blinn-Phong model can be written as

𝐼 =
𝑘𝑑 𝐿𝑑𝑚𝑚𝑥 𝐥 · 𝐧, 0 + 𝑘𝑠𝐿𝑠 max 𝐧 · 𝐡 𝛽, 0

𝑚 + 𝑏𝑑 + 𝑐𝑑2 + 𝑘𝑚 𝐼𝑚

For each color component we add

contributions from all sources

OpenGL shading

Need
• Lights
• Material properties – reflection coefficients
• Vectors: 𝐥, 𝐧, 𝐯,𝐡 – should be normalized to unit vectors

- State-based shading functions have been deprecated
(glNormal, glMaterial, glLight)

- Calculation can be done in
• Application
• Vertex shader
• Fragment shader

Specifying a Point Light Source

For each light source, we can set an RGBA for the diffuse,
specular, and ambient components, and specify the
position

vec4 diffuse0 =vec4(1.0, 0.0, 0.0, 1.0);
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0);
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0);

vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0);

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Recall Simple Light Sources

Point source
• Emits light equally in all direction
• Model with position and color – proportional to the inverse

square of the distance
• Distant source = infinite distance away (parallel)

Spotlight
• Restrict light from ideal point source

Ambient light
• Uniform illumination everywhere in scene -- An intensity

identical at every point

Point Source

The position is given in homogeneous coordinates
• If w =1.0 -- a regular point light source at a finite location
• If w =0.0 – a distant light source at infinity = a parallel source

with the given direction vector

The coefficients in distance terms are usually quadratic
(1
𝑎+𝑏𝑑+𝑐𝑑2

) where d is the distance from the point being
rendered to the light source

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison-

Wesley 2012

Spotlights

Derive from point source
• Angle between l (direction to the light) and

the focus of spotlight
• Cutoff angle 𝜃
• Attenuation proportional to 𝑐𝑐𝑠𝛼𝜙,

θ −θ φ

P

l Direction of focus
of spotlight 𝜙

// how close are we to being in the spot?
float spotCos = dot(lightDirection, -
ConeDirection);
// attenuate more, based on spot-relative
position
if (spotCos < SpotCosCutoff)
attenuation = 0.0;
else
attenuation *= pow(spotCos,SpotExponent);

Shreiner et al., OpenGL Programming Guide

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Ambient Light

Ambient light depends on
• color of light sources
• Reflective properties of surfaces
• E.g., a red light in a white room will cause a red ambient term

that disappears when the light is turned off

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Moving Light Sources

Light sources are geometric objects whose positions or directions
are affected by the model-view matrix

Depending on where we place the position (direction) setting
function, we can

• Move the light source(s) with the object(s)
• Fix the object(s) and move the light source(s)
• Fix the light source(s) and move the object(s)
• Move the light source(s) and object(s) independently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Material Properties

Material properties should match the terms in the light
model and are specified as RGBA values

The A value can be used to make the surface translucent

The default is that all surfaces are opaque regardless of A

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0);
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0);
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0);
GLfloat shine = 100.0

Emissive Term

A light source is allowed in the scene, e.g., the moon, in
OpenGL

-- specify an emissive component to a material
color4 emission = color4(0.0, 0.3, 0.3, 1.0);

This self-emission component

• unaffected by any other sources

• Not affect other surfaces

Structure to Hold Material Properties

struct MaterialProperties {
vec3 emission; // light produced by the
material
vec3 ambient; // what part of ambient light
is reflected
vec3 diffuse; // what part of diffuse light
is scattered
vec3 specular; // what part of specular
light is scattered
float shininess; // exponent for sharpening
specular reflection
// other properties you may desire
};

Shreiner et al., OpenGL Programming Guide

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Front and Back Faces

Every face has a front and back

For many objects, we never see the back face so we don’t
care how or if it’s rendered

If it matters, we can handle in shader

back faces not visible back faces visible

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygonal Shading

In per vertex shading, shading calculations are done for
each vertex

• Vertex colors become vertex shades and can be sent
to the vertex shader as a vertex attribute

• Alternately, we can send the parameters to the vertex
shader and have it compute the shade

By default, vertex shades are interpolated across an
object if passed to the fragment shader as a varying
variable (smooth shading)

We can also use uniform variables to shade with a single
shade (flat shading)

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Polygonal Shading – Flat Shading

Need to calculate 𝐧, 𝐯, 𝐥 for every point on a surface

Simplifications:

• 𝐧 is a constant for a flat polygon and can be precomputed in
an obj file

• 𝐯 is a constant for a distant viewer

• 𝐥 is a constant for a distant light

If all the three vectors are constants,

the shading calculation can be done once for each polygon
Every point has the same color/shade on the polygon

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Polygonal Shading

Triangles have a single normal
• Flat shading
• Shades at the vertices as computed by the Phong model can

be almost same
• Identical for a distant viewer (default) or if there is no specular

component

Consider model of sphere
• Normals of different triangles change significantly

• Shades of sphere change discontinuously

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Smooth Shading

We can set a new normal at each
vertex

Easy for sphere model
• If centered at origin n = p

Now smooth shading works

Note silhouette edge

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley

Gouraud Shading

The previous example is not general because we knew the
normal at each vertex analytically

For polygonal models, Gouraud proposed we use the
average of the normals around a mesh vertex

Gouraud Shading
• Find average normal at each vertex
• Apply modified Phong model at each vertex
• Interpolate vertex shades across each polygon

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Phong Shading

• Find average vertex normals 𝐧𝐴 and 𝐧𝐵

• Interpolate vertex normals 𝐧𝐶 and 𝐧𝐷

across edges
𝐧𝐶 𝛼 = 1 − 𝛼 𝐧𝐴 + 𝛼𝐧𝐵

• Interpolate edge normals across polygon
𝐧 𝛼,𝛽 = 1 − 𝛽 𝐧𝐶 + 𝛽𝐧𝐷

• Apply modified Phong model at each fragment

n

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Comparison

If the polygon mesh approximates surfaces with a high
curvatures, Phong shading may look smooth while Gouraud
shading may show edges

Phong shading requires much more work than Gouraud
shading

• Until recently not available in real time systems
• Now can be done using fragment shaders

Both need data structures to represent meshes so we
can obtain vertex normals

Examples

Example 1: vertex lighting
• Lighting is handled in vertex shader
• Color is computed for each vertex, then interpolated for each

pixel

Example 2: fragment lighting
• Lighting is handled in fragment shader
• Color is computed for each fragment (potential pixel)

Example 1: Vertex Lighting Shaders (Vertex Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// vertex shader
in vec4 vPosition;
in vec3 vNormal;
out vec4 color; //vertex shade

// light and material properties
uniform vec4 AmbientProduct, DiffuseProduct,
SpecularProduct;
uniform vec4 LightPosition;
uniform float Shininess;

uniform mat4 ModelView;
uniform mat4 Projection;

Example 1: Vertex Lighting Shaders (Vertex Shader)

void main()
{
 // Transform vertex position into eye coordinates
 vec3 pos = (ModelView * vPosition).xyz;

 // Compute the four vectors
 vec3 L = normalize(LightPosition.xyz - pos);
 vec3 E = normalize(-pos);
 vec3 H = normalize(L + E);

 // Transform vertex normal into eye coordinates
 vec3 N = normalize(ModelView*vec4(vNormal, 0.0)).xyz;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example 1: Vertex Lighting Shaders (Vertex Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// Compute terms in the illumination equation
 // Ambient term
 vec4 ambient = AmbientProduct;
 // Diffuse term
 float Kd = max(dot(L, N), 0.0);
 vec4 diffuse = Kd*DiffuseProduct;
 // Specular term
 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec4 specular = Ks * SpecularProduct;
 // discard the specular highlight if the light's behind
the vertex
 if(dot(L, N) < 0.0)
 specular = vec4(0.0, 0.0, 0.0, 1.0);
 color = ambient + diffuse + specular;
 color.a = 1.0;
 gl_Position = Projection * ModelView * vPosition;
}

Example 1: Vertex Lighting Shaders (Fragment
Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// fragment shader

in vec4 color;

void main()
{
 gl_FragColor = color;
}

Example 2: Fragment Lighting Shaders (Vertex
Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// vertex shader
in vec4 vPosition;
in vec3 vNormal;

// output values that will be interpolated per-fragment
out vec3 fN;
out vec3 fE;
out vec3 fL;

uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform mat4 Projection;

Example 2: Fragment Lighting Shaders (Vertex
Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void main()
{
 vec3 pos = (ModelView*vPosition).xyz;

 fN = (ModelView*vec4(vNormal, 0.0)).xyz ;
 fE = -pos.xyz;
 fL = (ModelView*LightPosition).xyz - pos;

 gl_Position = Projection*ModelView*vPosition;
}

Example 2: Fragment Lighting Shaders (Fragment
Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

// fragment shader

// per-fragment interpolated values from the vertex
shader
in vec3 fN;
in vec3 fL;
in vec3 fE;

uniform vec4 AmbientProduct, DiffuseProduct,
SpecularProduct;
uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform float Shininess;

Example 2: Fragment Lighting Shaders (Fragment
Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

void main()
{
 // Normalize the input lighting vectors

 vec3 N = normalize(fN);
 vec3 E = normalize(fE);
 vec3 L = normalize(fL);

 vec3 H = normalize(L + E);
 vec4 ambient = AmbientProduct;

Example 2: Fragment Lighting Shaders
(Fragment Shader)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

 float Kd = max(dot(L, N), 0.0);
 vec4 diffuse = Kd*DiffuseProduct;

 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec4 specular = Ks*SpecularProduct;

 // discard the specular highlight if the light's
behind the vertex
 if(dot(L, N) < 0.0)
 specular = vec4(0.0, 0.0, 0.0, 1.0);

 gl_FragColor = ambient + diffuse + specular;
 gl_FragColor.a = 1.0;
}

Per-vertex Lighting vs Per-fragment Lighting

Per-vertex lighting
• Lighting is handled in vertex shader
• Color is computed for each vertex, then interpolated for each

pixel
• Efficient, but rough

Per-fragment lighting
• Lighting is handled in fragment shader
• Color is computed for each fragment (potential pixel)
• Sophisticated, but slow

Per-vertex Lighting vs Per-fragment Lighting

Per-vertex Lighting Per-fragment Lighting

	Midterm Statistics
	Topics
	Shading
	Phong Model
	Phong Model
	Computation of Vectors
	Computation of Vectors
	Plane Normals
	Normal to Sphere
	Parametric Form
	Parametric Form
	General Case
	Recall Blinn-Phong Model
	OpenGL shading
	Specifying a Point Light Source
	Recall Simple Light Sources
	Point Source
	Spotlights
	Global Ambient Light
	Moving Light Sources
	Material Properties
	Emissive Term
	Structure to Hold Material Properties
	Front and Back Faces
	Polygonal Shading
	Polygonal Shading – Flat Shading
	Polygonal Shading
	Smooth Shading
	Gouraud Shading
	Phong Shading
	Comparison
	Examples
	Example 1: Vertex Lighting Shaders (Vertex Shader)
	Example 1: Vertex Lighting Shaders (Vertex Shader)
	Example 1: Vertex Lighting Shaders (Vertex Shader)
	Example 1: Vertex Lighting Shaders (Fragment Shader)
	Example 2: Fragment Lighting Shaders (Vertex Shader)
	Example 2: Fragment Lighting Shaders (Vertex Shader)
	Example 2: Fragment Lighting Shaders (Fragment Shader)
	Example 2: Fragment Lighting Shaders (Fragment Shader)
	Example 2: Fragment Lighting Shaders (Fragment Shader)
	Per-vertex Lighting vs Per-fragment Lighting
	Per-vertex Lighting vs Per-fragment Lighting

