
Midterm Statistics 

Highest: 106 

Median: 93 

Mean: 92.52 

Standard Deviation: 8.61 



Topics 

Lighting and shading 

Shading in OpenGL 
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Shading 

Why does the image of a real sphere look like 

 

 

Light-material interactions cause each point to have 
a different color or shade 

Need to consider  
• Light sources 
• Material properties 
• Location of viewer 
• Surface orientation 

4 Key elements of image 
formation 
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Phong Model 

Uses four unit vectors to calculate a color on a surface 
• Surface normal 𝐧 
• To viewer 𝐯 
• To light source 𝐥 
• Perfect reflector 𝐫 

 
 

Normal 
To viewer  

To light source  

Perfect 
reflection 



Phong Model 

A simple model that can be computed rapidly 

Each light source has three components 

• Ambient  

• Diffuse  

• Specular 

 

Shreiner et al 

A 

A+D 

A+D+S 

Point light source 
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Computation of Vectors 

Need to compute the four vectors  
• Surface normal 𝐧 
• To viewer 𝐯 
• To light source 𝐥 
• Perfect reflector 𝐫 

Simplifications can apply, e.g. 
• Normal can be the same for all points on 

a flat polygon 

• Light direction is the same for all points 

if the light is far away from the surface 

Normal 
To viewer  

To light source  

Perfect 
reflection 



Computation of Vectors 

l and v are specified by the application 

h can be computed from l and v 

How to calculate n? 

Depending on surface 

OpenGL leaves determination of normal to application, 
e.g., the obj file contains the normals 
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Plane Normals 

Plane can be determined by three points P1, P2, P3 or normal n and P0 

Given three noncolinear points, e.g., the three vertices of a triangle 
𝑃1, 𝑃2, and 𝑃3, the outfacing normal can be obtained by 

 
𝐧 =

(𝑃2 − 𝑃1) × (𝑃0−𝑃2) 
(𝑃2 − 𝑃1) × (𝑃0−𝑃2) 

 

Order of vectors is important! 

 

p0 

p1 

p2 

n 

p 
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Normal to Sphere 

How we compute normals for curved surfaces? 

Depend on how we model the surface. 

Implicit function of a unit sphere centered at the origin 
𝑓 𝑥,𝑦. 𝑧 = 𝑥2 + 𝑦2 +𝑧2 −1 = 0 

Or in vector form 
𝑓 𝐩 = 𝐩 ∙ 𝐩 − 1 = 0 

Normal is given by gradient 

𝐧𝐧 =  

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧

=
2𝑥
2𝑦
2𝑧

= 2𝐩 𝐧 =
𝐧𝐧
𝐧𝐧

= 𝐩 
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Parametric Form 

Parametric form of a sphere, −𝜋
2

< 𝑢, 𝑣 < 𝜋
2
 

 

 

Normal calculated from the tangent plane 

Tangent plane determined by vectors 

 

𝜕𝐩
𝜕𝑢

=

𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

    
𝜕𝐩
𝜕𝑣

=

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣

 

 

 

𝑥 = 𝑥(𝑢, 𝑣) = cos 𝑢 sin 𝑣 
𝑦 = 𝑦(𝑢, 𝑣) = cos 𝑢 cos 𝑣 
𝑧 =  𝑧(𝑢, 𝑣) = sin 𝑢 

independent 

Normal given by cross product 

𝐧 =
𝜕𝐩
𝜕𝑢 × 𝜕𝐩

𝜕𝑣
𝜕𝐩
𝜕𝑢 × 𝜕𝐩

𝜕𝑣
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Parametric Form 

Parametric form of a sphere, −𝜋
2

< 𝑢, 𝑣 < 𝜋
2
 

 

 

Tangent plane determined by vectors 

 

 

𝑥 = 𝑥(𝑢, 𝑣) = cos 𝑢 sin 𝑣 
𝑦 = 𝑦(𝑢, 𝑣) = cos 𝑢 cos 𝑣 
𝑧 =  𝑧(𝑢, 𝑣) = sin 𝑢 

Normal given by cross product 𝐧′ = cos𝑢
cos𝑢 sin 𝑣
cos𝑢 cos 𝑣

sin𝑢
= (cos𝑢)𝐩 

𝜕𝐩
𝜕𝑢

=

𝜕𝑥
𝜕𝑢
𝜕𝑦
𝜕𝑢
𝜕𝑧
𝜕𝑢

=
− sin𝑢 𝑠𝑠𝑠 𝑣 
−𝑠𝑠𝑠 𝑢 𝑐𝑐𝑠 𝑣 

cos𝑢
    
𝜕𝐩
𝜕𝑣

=

𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑣
𝜕𝑧
𝜕𝑣

=
cos𝑢 cos𝑣
−cos𝑢 sin𝑣

0
 

𝐧 = 𝐩 



General Case 

We can compute parametric normals for other simple cases 
• Quadrics 
• Parameteric polynomial surfaces 

–Bezier surface patches (Chapter 10) 

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 
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Recall Blinn-Phong Model 

For each light source and each color component, the 
Blinn-Phong model can be written as 

 

𝐼 =
𝑘𝑑 𝐿𝑑𝑚𝑚𝑥 𝐥 · 𝐧, 0 + 𝑘𝑠𝐿𝑠 max 𝐧 · 𝐡 𝛽, 0

𝑚 +  𝑏𝑑 + 𝑐𝑑2 +  𝑘𝑚 𝐼𝑚 

 
For each color component we add  

contributions from all sources 



OpenGL shading 

Need  
• Lights 
• Material properties – reflection coefficients 
• Vectors: 𝐥, 𝐧, 𝐯,𝐡 – should be normalized to unit vectors 

- State-based shading functions have been deprecated 
(glNormal, glMaterial, glLight) 

- Calculation can be done in 
• Application  
• Vertex shader 
• Fragment shader 



Specifying a Point Light Source 

For each light source, we can set an RGBA for the diffuse, 
specular, and ambient components, and specify the 
position 

 

 

 

 

 

 

vec4 diffuse0 =vec4(1.0, 0.0, 0.0, 1.0); 
vec4 ambient0 = vec4(1.0, 0.0, 0.0, 1.0); 
vec4 specular0 = vec4(1.0, 0.0, 0.0, 1.0); 
 
vec4 light0_pos =vec4(1.0, 2.0, 3,0, 1.0); 
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Recall Simple Light Sources 

Point source 
• Emits light equally in all direction 
• Model with position and color – proportional to the inverse 

square of the distance 
• Distant source = infinite distance away (parallel) 

Spotlight 
• Restrict light from ideal point source 

Ambient light 
• Uniform illumination everywhere in scene -- An intensity 

identical at every point 
 



Point Source 

The position is given in homogeneous coordinates 
• If w =1.0 -- a regular point light source at a finite location 
• If w =0.0 – a distant light source at infinity = a parallel source 

with the given direction vector 

The coefficients in distance terms are usually quadratic 
( 1
𝑎+𝑏𝑑+𝑐𝑑2

)  where d is the distance from the point being 
rendered to the light source 
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Spotlights 

Derive from point source 
• Angle between l (direction to the light) and 

the focus of spotlight 
• Cutoff angle 𝜃 
• Attenuation proportional to 𝑐𝑐𝑠𝛼𝜙,  

θ −θ φ 

P 

l Direction of focus 
of spotlight 𝜙 

// how close are we to being in the spot? 
float spotCos = dot(lightDirection, -
ConeDirection); 
// attenuate more, based on spot-relative 
position 
if (spotCos < SpotCosCutoff) 
attenuation = 0.0; 
else 
attenuation *= pow(spotCos,SpotExponent); 

Shreiner et al., OpenGL Programming Guide 
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Global Ambient Light 

Ambient light depends on  
• color of light sources 
• Reflective properties of surfaces 
• E.g., a red light in a white room will cause a red ambient term 

that disappears when the light is turned off 
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Moving Light Sources 

Light sources are geometric objects whose positions or directions 
are affected by the model-view matrix 

Depending on where we place the position (direction) setting 
function, we can 

• Move the light source(s) with the object(s) 
• Fix the object(s) and move the light source(s) 
• Fix the light source(s) and move the object(s) 
• Move the light source(s) and object(s) independently 
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Material Properties 

Material properties should match the terms in the light 
model and are specified as RGBA values 

The A value can be used to make the surface translucent 

The default is that all surfaces are opaque regardless of A 

 
 

vec4 ambient = vec4(0.2, 0.2, 0.2, 1.0); 
vec4 diffuse = vec4(1.0, 0.8, 0.0, 1.0); 
vec4 specular = vec4(1.0, 1.0, 1.0, 1.0); 
GLfloat shine = 100.0 



Emissive Term 

A light source is allowed in the scene, e.g., the moon, in 
OpenGL  

-- specify  an emissive component to a material 
color4 emission = color4(0.0, 0.3, 0.3, 1.0); 

 

This self-emission component  

• unaffected by any other sources 

• Not affect other surfaces 

 



Structure to Hold Material Properties 

struct MaterialProperties { 
vec3 emission; // light produced by the 
material 
vec3 ambient; // what part of ambient light 
is reflected 
vec3 diffuse; // what part of diffuse light 
is scattered 
vec3 specular; // what part of specular 
light is scattered 
float shininess; // exponent for sharpening 
specular reflection 
// other properties you may desire 
}; 

Shreiner et al., OpenGL Programming Guide 
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Front and Back Faces 

Every face has a front and back 

For many objects, we never see the back face so we don’t 
care how or if it’s rendered 

If it matters, we can handle in shader  

back faces not visible back faces visible 
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Polygonal Shading 

In per vertex shading, shading calculations are done for 
each vertex 

• Vertex colors become vertex shades and can be sent 
to the vertex shader as a vertex attribute 

• Alternately, we can send the parameters to the vertex 
shader and have it compute the shade 

By default, vertex shades are interpolated across an 
object if passed to the fragment shader as a varying 
variable (smooth shading) 

We can also use uniform variables to shade with a single 
shade (flat shading) 
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Polygonal Shading – Flat Shading 

Need to calculate 𝐧, 𝐯, 𝐥 for every point on a surface 

Simplifications: 

• 𝐧 is a constant for a flat polygon and can be precomputed in 
an obj file 

• 𝐯 is a constant for a distant viewer 

• 𝐥 is a constant for a distant light 

If all the three vectors are constants, 

the shading calculation can be done once for each polygon  
Every point has the same color/shade on the polygon 
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Polygonal Shading 

Triangles have a single normal 
• Flat shading 
• Shades at the vertices as computed by the Phong model can 

be almost same  
• Identical for a distant viewer (default) or if there is no specular 

component  

Consider model of sphere 
• Normals of different triangles change significantly 

• Shades of sphere change discontinuously 
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Smooth Shading 

We can set a new normal at each 
vertex 

Easy for sphere model  
• If centered at origin n = p  

Now smooth shading works 

Note silhouette edge 
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Gouraud Shading 

The previous example is not general because we knew the 
normal at each vertex analytically 

For polygonal models, Gouraud proposed we use the 
average of the normals around a mesh vertex 

 

Gouraud Shading 
• Find average normal at each vertex 
• Apply modified Phong model at each vertex 
• Interpolate vertex shades across each polygon 

 

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4| 



Phong Shading 

• Find average vertex normals 𝐧𝐴 and 𝐧𝐵 

• Interpolate vertex normals 𝐧𝐶 and 𝐧𝐷 

across edges 
𝐧𝐶 𝛼 = 1 − 𝛼 𝐧𝐴 + 𝛼𝐧𝐵 

• Interpolate edge normals across polygon 
𝐧 𝛼,𝛽 = 1 − 𝛽 𝐧𝐶 + 𝛽𝐧𝐷 

• Apply modified Phong model at each fragment 

 

n 
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Comparison 

If the polygon mesh approximates surfaces with a high 
curvatures, Phong shading may look smooth while Gouraud 
shading may show edges 

Phong shading requires much more work than Gouraud 
shading 

• Until recently not available in real time systems 
• Now can be done using fragment shaders 

Both need data structures to represent meshes so we 
can obtain vertex normals 
 



Examples 

Example 1: vertex lighting 
• Lighting is handled in vertex shader 
• Color is computed for each vertex, then interpolated for each 

pixel  

Example 2: fragment lighting 
• Lighting is handled in fragment shader 
• Color is computed for each fragment (potential pixel) 



Example 1: Vertex Lighting Shaders (Vertex Shader) 
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// vertex shader 
in vec4 vPosition; 
in vec3 vNormal; 
out vec4 color;  //vertex shade 
 
// light and material properties 
uniform vec4 AmbientProduct, DiffuseProduct, 
SpecularProduct; 
uniform vec4 LightPosition; 
uniform float Shininess; 
 
uniform mat4 ModelView; 
uniform mat4 Projection; 
 



Example 1: Vertex Lighting Shaders (Vertex Shader) 

void main() 
{ 
    // Transform vertex  position into eye coordinates 
    vec3 pos = (ModelView * vPosition).xyz; 
  
    // Compute the four vectors 
    vec3 L = normalize( LightPosition.xyz - pos ); 
    vec3 E = normalize( -pos ); 
    vec3 H = normalize( L + E ); 
 
    // Transform vertex normal into eye coordinates 
    vec3 N = normalize( ModelView*vec4(vNormal, 0.0) ).xyz; 
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Example 1: Vertex Lighting Shaders (Vertex Shader) 
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// Compute terms in the illumination equation 
    // Ambient term 
    vec4 ambient = AmbientProduct; 
    // Diffuse term 
    float Kd = max( dot(L, N), 0.0 ); 
    vec4  diffuse = Kd*DiffuseProduct; 
    // Specular term 
    float Ks = pow( max(dot(N, H), 0.0), Shininess ); 
    vec4  specular = Ks * SpecularProduct; 
 // discard the specular highlight if the light's behind 
the vertex 
    if( dot(L, N) < 0.0 )   
        specular = vec4(0.0, 0.0, 0.0, 1.0); 
    color = ambient + diffuse + specular; 
    color.a = 1.0;  
    gl_Position = Projection * ModelView * vPosition; 
} 



Example 1: Vertex Lighting Shaders (Fragment 
Shader) 
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// fragment shader 
 
in vec4 color; 
 
void main()  
{  
    gl_FragColor = color; 
}  

 
 



Example 2: Fragment Lighting Shaders (Vertex 
Shader) 
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// vertex shader  
in vec4 vPosition; 
in vec3 vNormal; 
 
// output values that will be interpolated per-fragment 
out vec3 fN; 
out vec3 fE; 
out vec3 fL; 
 
uniform mat4 ModelView; 
uniform vec4 LightPosition; 
uniform mat4 Projection; 



Example 2: Fragment Lighting Shaders (Vertex 
Shader) 
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void main() 
{ 
    vec3 pos = (ModelView*vPosition).xyz; 
 
    fN = (ModelView*vec4(vNormal, 0.0)).xyz ; 
    fE = -pos.xyz; 
    fL = (ModelView*LightPosition).xyz - pos; 
 
 
    gl_Position = Projection*ModelView*vPosition; 
} 
 



Example 2: Fragment Lighting Shaders (Fragment 
Shader) 
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// fragment shader 
 
// per-fragment interpolated values from the vertex 
shader 
in vec3 fN; 
in vec3 fL; 
in vec3 fE; 
 
uniform vec4 AmbientProduct, DiffuseProduct, 
SpecularProduct; 
uniform mat4 ModelView; 
uniform vec4 LightPosition; 
uniform float Shininess; 

 



Example 2: Fragment Lighting Shaders (Fragment 
Shader) 
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void main()  
{  
    // Normalize the input lighting vectors 
     
   vec3 N = normalize(fN); 
    vec3 E = normalize(fE); 
    vec3 L = normalize(fL); 
 
    vec3 H = normalize( L + E );    
    vec4 ambient = AmbientProduct; 

 
     



Example 2: Fragment Lighting Shaders 
(Fragment Shader) 
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    float Kd = max(dot(L, N), 0.0); 
    vec4 diffuse = Kd*DiffuseProduct; 
     
    float Ks = pow(max(dot(N, H), 0.0), Shininess); 
    vec4 specular = Ks*SpecularProduct; 
 
    // discard the specular highlight if the light's 
behind the vertex 
    if( dot(L, N) < 0.0 )  
 specular = vec4(0.0, 0.0, 0.0, 1.0); 
     
    gl_FragColor = ambient + diffuse + specular; 
    gl_FragColor.a = 1.0; 
}  



Per-vertex Lighting vs Per-fragment Lighting 

Per-vertex lighting 
• Lighting is handled in vertex shader 
• Color is computed for each vertex, then interpolated for each 

pixel  
• Efficient, but rough 

Per-fragment lighting 
• Lighting is handled in fragment shader 
• Color is computed for each fragment (potential pixel) 
• Sophisticated, but slow 

 



Per-vertex Lighting vs Per-fragment Lighting 

Per-vertex Lighting  Per-fragment Lighting  
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