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Projections and View Normalization 

The default projection is 
orthogonal (orthographic) 
projection 

Most graphics systems use view 
normalization 

• All other views are converted 
to the orthographic view by 
distorting the objects -- 
normalization 

• Allows use of the same 
pipeline for all views 



The OpenGL projection functions cannot produce general 
parallel projections – the oblique projection 

 

 
 

It seems the cube has been sheared 

Oblique Projection = Shear + Orthogonal Projection 

E. Angel and D. Shreine 

Oblique Projections 
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General Shear 

top view side view 

• The far and near clipping 
planes are parallel to the view 
plane  

• The other four planes are 
parallel to the projection 
direction 

tan𝜃 =
𝑧

𝑥𝑝 − 𝑥 

projector Projection plane 

projector 

𝑥𝑝 = 𝑥 + 𝑧 cot𝜃 𝑦𝑝 = 𝑦 + 𝑧 cot𝜙 



Shear Matrix 

xy shear (z values unchanged) 

 

 

 

Projection matrix 
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H(θ,φ) =  

P = Morth H(θ,φ)  



Shear Matrix 

General case:  

 P = Morth STH(θ,φ)  
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𝑙𝑙𝑙𝑙 = 𝑥𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot 𝜃 
𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot 𝜃 
𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑦𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot𝜙 
𝑡𝑜𝑜 = 𝑦𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot𝜙 

 
𝑥𝑚𝑚𝑚, 𝑥𝑚𝑚𝑚, 𝑦𝑚𝑚𝑚, 𝑦𝑚𝑚𝑚 are determined by intersections of the four side 
planes with the near plane   
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Effect on Clipping 

The projection matrix P = STH transforms the original clipping 
volume to the default clipping volume 

top view 

DOP DOP 

near plane 

far plane 

object 

clipping 
volume 

z = -1 

z =  1 

x = -1 
x = 1 

   distorted object 
(projects correctly) 
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Equivalency 



Simple Perspective 

Center of projection at the origin, projection plane is 
orthogonal to the z-direction and is parallel to the lens 

Projection plane z = d, d < 0 
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Perspective Equations 

Consider top and side views 

dz
xxp /

= yp = dz
y
/

zp = d 
z
x

d
xp =

Top view side view 

Nonuniform foreshortening 



Perspective Transformation 

Perspective transformation is 

• Not linear 

• Not affine 

• Not reversible 



Homogeneous Coordinate Form 



















=

0/100
0100
0010
0001

d

M

Consider Pp = 𝐌Pc where 
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A point measured in the 
clipping frame 

The corresponding point 
measured in the camera frame 



Perspective Division 

Note that w ≠ 1, so we must divide by w to return from 
homogeneous coordinates 

This perspective division yields the desired perspective 
equations  

 

 

 

xp = 
dz

x
/

yp = 
dz

y
/

zp = d 



Perspective with OpenGL 

View volume is determined by the angle of view (field of view) 

Viewing frustum 
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Simple Perspective with OpenGL 

Consider a simple perspective with  
• the COP at the origin,  
• the near clipping plane at z = -1, and  
• a 90 degree field of view determined by the planes  x 

= ±z, y = ±z 
• Perspective projection matrix is 
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Simple Perspective with OpenGL 
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A point P (x, y ,z, 1) is projected to a new point Q 
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Recall View Normalization 

The default projection is 
orthogonal (orthographic) 
projection 

Most graphics systems use view 
normalization 

• All other views are converted 
to the orthographic view by 
distorting the objects -- 
normalization 

• Allows use of the same 
pipeline for all views 



Perspective Projection and Normalization 
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A point P=(x, y, z, 1) is transformed to a new point P’= (x’, 
y’, z’, w’) as 

x’ = x 
y’ = y 
z’ = αz+β 
w’ = -z 

Consider a matrix 

𝐏′ = 𝐍𝐍 

We will show the projection can be achieved by view 
normalization and an orthographic projection 



Perspective Projection and Normalization 

x’’ = -x/z 
y’’ = -y/z 
z’’ = -(α+β/z) 

Then, apply an orthographic projection along the z-axis, we have 

After perspective division, we can have P’ represented in 3D  
P’= (x’’, y’’, z’’) 

The result is exactly the same as performing perspective 
projection directly! 

𝑄 = 𝐌orth𝑃′ =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

−x/z
−y/z

−(α+β/z)
1

=

−x/z
−y/z

0
1

=

x
y
0
−𝑧

 



Picking α and β 

After applying view normalization, the new clipping volume 
should be transformed to the default clipping volume 
 
• The near plane z= - near needs to be mapped to z’’ = -1 
• The far plane z= - far needs to be mapped to z’’ =1 
• The sides x = ±z  and y = ±z needs to be mapped to x’’ = ± 

1, y’’ = ± 1 

What are α and β for? 
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Normalization Transformation 

Original clipping volume 

original object 

Normalized clipping volume 

distorted object 
projects correctly 



Picking α and β 

and  
far-near
farnear +

=α
arf-near
farnear2 ∗

=β

z’’ = -(α+β/z) 

z’’ = -(α+β/z)= -(α+β/(-near))=-1 
z =-near will transformed to  

z’’ = -(α+β/z)= -(α+β/(-far))=1 
z =-far will transformed to  
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OpenGL Perspective 
Frustum(left,right,bottom,top,near,far) 

• Frustum can be either 
symmetric about the z-
axis or asymmetric. 

• All are measured in the 
camera frame. 

 

For the symmetric case, 
𝐌 = 𝐌orth𝐍 



OpenGL Perspective 

How do we handle the asymmetric frustum? 

Convert the frustum to a symmetric one by performing a shear followed by 
a scaling to get the normalized perspective volume.  

Step 1 Shear: Transform the point 𝑙𝑙𝑙𝑙+𝑟𝑟𝑟𝑟𝑟
2

, 𝑡𝑡𝑡+𝑏𝑏𝑏𝑏𝑏𝑏
2

,−𝑛𝑛𝑛𝑛  to 
(0,0,−𝑛𝑛𝑛𝑛) 
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OpenGL Perspective 

After shearing, the resulting frustum is described by  

2near-
left-right

±=x
2near-
bottom-top

±=y4 sides 

Near plane nearz −=

Far plane farz −=



OpenGL Perspective 

Step 2: Scaling 

𝐒 =

2𝑛𝑛𝑛𝑛
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙

0 0 0

0
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𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏 0 0

0 0 1 0
0 0 0 0

 

Step 3: Perspective normalization N 

The final perspective matrix 

 

𝐌𝒑 = 𝐍𝐍𝐍 =

2𝑛𝑛𝑛𝑛
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0
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𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0

0
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𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡
𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏 0

0 0
𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

2𝑛𝑛𝑛𝑛 ∗ 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

0 0 −1 0
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Using Field of View: Perspective() 

An alternative and more convenient way is to use the field of view 

Perspective(fovy, aspect, near, far) often 
provides a better interface 

• Fovy is the angle between the 
top and the bottom planes 

• aspect = w/h of projection 
plane 

projection plane 



Using Field of View: Perspective() 

Enforce a symmetric frustum 
𝑙𝑙𝑙𝑙 = −𝑟𝑟𝑟𝑟𝑟 
𝑏𝑏𝑏𝑏𝑏𝑏 = −𝑡𝑡𝑡 

Frustum() ⟺Perspective() 
𝑓𝑓𝑓𝑓 = 2 tan−1

𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏
2𝑛𝑛𝑛𝑛

 

 
𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏 

𝑡𝑡𝑡 = tan
𝑓𝑓𝑓𝑓

2
∗ 𝑛𝑛𝑛𝑛 
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