Topics

Perspective Projection

Coordinate Systems in OpenGL

Your starting » {x, ¥, Z) object/model

coordinates

coordinates

i

Object units; could be
meters, inches, etc.

Append w of 1.0
You need these
in order to » {% ¥ z, 1.0) homogeneous Same units
translate and model coordinates

project !
User/shader transforms: scale, rotate, translate, project
OpenGL » {x, ¥, 2, W) homogeneous Units normalized such that divide by w
required input clip coordinates leaves visible points between -1.0 to +1.C
y
OpenGL divide by w

Scaled by OpenGL to

your viewport and
depth range

{x, vy, z) normalized
device coordinates

y

Range of -1.0to+1.0 for xand v
and 0.0to 1.0 forz

OpenGLclipping and viewport/depth-range transform

{x, v) are window coordinates
7 is depth coordinate

L

y

{x, ¥) units are in pixels {with fractions)
zisinrange of 0.0 to 1.0, or depth range

Rasterization

Shreiner et al.

Projections and View Normalization

The default projection is '
orthogonal (orthographic) e |—> Og:‘o‘:;ggﬁgﬂ'c |—>
projection

Most graphics systems use view
normalization

» All other views are converted
to the orthographic view by —>
distorting the objects --
normalization

 Allows use of the same
pipeline for all views

/ //

E. Angel and D. Shreiner

Oblique Projections

The OpenGL projection functions cannot produce general
parallel projections — the oblique projection

E. Angel and D. Shreine

It seems the cube has been sheared

Oblique Projection = Shear + Orthogonal Projection

General Shear

A L
Back elipping plara The far and near clipping |
Object planes are parallel to the view
\ | The other four planes are
Projection plane p_arallgl to the projection
\DOP direction
= X
Z projector Projection plane =)
i projector
top view : :
2 side view
tan @ =
Xp — X ' Z -

= Xp =X + z cot@ E. Angel and D. Shreiner

Yo =vy+zcotgo

Shear Matrix

Xy shear (z values unchanged)

H(8.¢) =

(1 0 cot® O]
0 1 cotep O
0 O 1 0

00 0 1

Projection matrix

P= I\/Iorth H(G’(I))

Shear Matrix

General case: 2 _right +left

0 0
right — left right —left
b= M STH(O. 0 2 0 _ top +bottom
orth (9.9) ST = top — bottom top —Dbottom
0 0 2 far + near
near — far far —near
0 0 0 1 |

left = x,,;, — near * cotf
right = x4, — near * cot o
bottom = y,,;,, — near * cot ¢
top = Vimarx — near * cot @

Xminy» Xmaxs Ymin» Ymax are determined by intersections of the four side
planes with the near plane

Effect on Clipping

The projection matrix P = STH transforms the original clipping
volume to the default clipping volume

object top view z=1
DOP ,,
— DOP
||
/ o, W
/ \ far plane \ x=1 !
z=-1

clipping near plane

volume distorted object

E. Angel and D. Shreiner (prOjeCtS COrreCtly)

Equivalency

E. Angel and D. Shreiner

Simple Perspective

Center of projection at the origin, projection plane is
orthogonal to the z-direction and is parallel to the lens

Projection planez=d,d<0

—Z —Z
A A
y
COP COP i x, ¥, 2)
—» X ——» X A

\ / i;(p’ j: P zp)

(<) (b) z

E. Angel and D. Shreiner

Perspective Equations

Consider top and side views

b4
(x, z) i
. d) g?
i ; z=d (v,) i
: - X Z -~ i
z=d
Y Top view side view
Z
E. Angel and D. Shreiner
X X y z =d
= — X, =—— = /T p
5= @D

Nonuniform foreshortening

Perspective Transformation

Perspective transformation is
 Not linear
 Not affine

* Not reversible

Homogeneous Coordinate Form

Consider P, = MP. where

A point measured in the The corresponding point
clipping frame measured in the camera frame
X 10 0 O
y 0 1 0
PC — M — —
7 0 0 1 O
1 00 1/d O

Perspective Division

Note that w = 1, so we must divide by w to return from
homogeneous coordinates

This perspective division yields the desired perspective
equations

X = X yp: y Z:d

" z/d z/d

Perspective with OpenGL

View volume is determined by the angle of view (field of view)

Viewing frustum

View volume

Back
Front clipping
o View clipping Plane
/:_::«"”:,—-”” plane plane

Simple Perspective with OpenGL

Consider a simple perspective with
 the COP at the origin,
* the near clipping plane at z=-1, and

» a 90 degree field of view determined by the planes X
=47,y =1z
 Perspective projection matrix is

1

0
0
0

0 O
1 0
0 1
0 1/d

where d = -1

(_]I _]r _.l)“\

z=-for

(1,1,-1)

Z=-near

X

E. Angel and D. Shreiner:

Simple Perspective with OpenGL

Apoint P (X, y,z, 1) is projected to a new point Q

1 0 0 O]x X | [=x/z]
O 1 0 O —v/z
O 0 1 0}z Z -1

_O 0 -1 O__l_ —-z] | 1 |

Recall View Normalization

The default projection is '
orthogonal (orthographic) e |—> Og:‘o‘:;ggﬁgﬂ'c |—>
projection

Most graphics systems use view
normalization

» All other views are converted
to the orthographic view by —>
distorting the objects --
normalization

 Allows use of the same
pipeline for all views

/ //

E. Angel and D. Shreiner

Perspective Projection and Normalization

We will show the projection can be achieved by view
normalization and an orthographic projection

1 0 0 O]
Consider a matrix N = o1 00

0 0 o P

0 0 -1 0]
A point P=(x, y, z, 1) is transformed to a new point P’= (X,
y', Z', W) as P’ = NP

X' =X
- Z = ZLZ+B

W = -z

Perspective Projection and Normalization

After perspective division, we can have P’ represented in 3D

P1: (X”’ y11’ Z11
mm) X =-X/2Z
y” =-ylz
2” = -(a+P/z)
Then, apply an orthographic projection along the z-axis, we have
1 0 0 O] —xz 7 [—xz] T[X7
_ , |01 0 O vz | vzl _|Y
C=MormP =15 o 0 o0 —(a+p/i)l 1 O |O
0o 0 0 1L 1 1 L 11 L[z

The result is exactly the same as performing perspective
projection directly!

Picking a and

What are a and p for?

After applying view normalization, the new clipping volume
should be transformed to the default clipping volume

 The near plane z= - near needs to be mapped to z” =-1

e The far plane z= - far needs to be mapped to z” =1

« The sides x =1z andy =z needs to be mapped to x” =+
1,y"=+1

Normalization Transformation

Original clipping volume Normalized clipping volume

Z=-X

\ z— -far ‘
"distorted object/
projects correctly
COP P

original object

E. Angel and D. Shreiner

Picking a and

2” = -(a+p/z)
z =-near will transformed to
2” = -(atp/z)= -(a+B/(-near))=-1

z =-far will transformed to
2” = -(atp/z)= -(a+B/(-far))=1

near + far 2near * far
‘ o= and ﬂ =
near - far near - far

OpenGL Perspective
Frustum(left, right,bottom, top,near,far)

 Frustum can be either
symmetric about the z-
axis or asymmetric.
o All are measured in the -
~(left, botiom -near]

camera frame.
For the symmetric case,
M=M,yN

>

Z

"l

“Iright, top,-near]

E. Angel and D. Shreiner

OpenGL Perspective

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by
a scaling to get the normalized perspective volume.

Step 1 Shear: Transform the point (lef Hzrig e t°p+b20twm, —near) to
(0,0,—near)
(1 0 cot® O]
0 1 cotep O
H(0,) =
O0=lg 0 1 o
00 0 1
' top + bottom
where Cote:Ieft+r|ght and Cot g = P+

2near 2near

OpenGL Perspective

After shearing, the resulting frustum is described by

o right-left top - bottom

- 2near - 2near

4 sides

Near plane Z =—near

Far plane z=—far

OpenGL Perspective

Step 2: Scaling

2near 9 0 0o
right — left
_ 2near
S = 0
top — bottom
0 0 1 0
0 0 0 O

Step 3: Perspective normalization N

The final perspective matrix

left +right
right — left
bottom + top

2near 0
right — left
0 2near
Mp = NSH = top — bottom
0 0
0 0

top — bottom
near + far

near — far
-1

0

2near * far

near — far
0

Using Field of View: Perspective()

An alternative and more convenient way is to use the field of view

Perspective(fovy, aspect, near, far) often
provides a better interface

, — projection plane

— - <

 Fovy is the angle between the
top and the bottom planes
- « aspect = w/h of projection

plane

fov

E. Angel and D. Shreiner

Using Field of View: Perspective()

Enforce a symmetric frustum
left = —right
bottom = —top

Frustum() <Perspective()

, top — bottom

= 2tan”
fovy an 2near

left = aspect * bottom
(%)
top = tan 5 | x near

	Topics
	Coordinate Systems in OpenGL
	Projections and View Normalization
	Oblique Projections
	General Shear
	Shear Matrix
	Shear Matrix
	Effect on Clipping
	Equivalency
	Simple Perspective
	Perspective Equations
	Perspective Transformation
	Homogeneous Coordinate Form
	Perspective Division
	Perspective with OpenGL
	Simple Perspective with OpenGL
	Simple Perspective with OpenGL
	Recall View Normalization
	Perspective Projection and Normalization
	Perspective Projection and Normalization
	Picking a and b
	Normalization Transformation
	Picking a and b
	OpenGL Perspective
	OpenGL Perspective
	OpenGL Perspective
	OpenGL Perspective
	Using Field of View: Perspective()
	Using Field of View: Perspective()

