
Topics 

Perspective Projection 



Coordinate Systems in OpenGL 

Shreiner et al. 



E. Angel and D. Shreiner 

Projections and View Normalization 

The default projection is 
orthogonal (orthographic) 
projection 

Most graphics systems use view 
normalization 

• All other views are converted 
to the orthographic view by 
distorting the objects -- 
normalization 

• Allows use of the same 
pipeline for all views 



The OpenGL projection functions cannot produce general 
parallel projections – the oblique projection 

 

 
 

It seems the cube has been sheared 

Oblique Projection = Shear + Orthogonal Projection 

E. Angel and D. Shreine 

Oblique Projections 



E. Angel and D. Shreiner 

General Shear 

top view side view 

• The far and near clipping 
planes are parallel to the view 
plane  

• The other four planes are 
parallel to the projection 
direction 

tan𝜃 =
𝑧

𝑥𝑝 − 𝑥 

projector Projection plane 

projector 

𝑥𝑝 = 𝑥 + 𝑧 cot𝜃 𝑦𝑝 = 𝑦 + 𝑧 cot𝜙 



Shear Matrix 

xy shear (z values unchanged) 

 

 

 

Projection matrix 

 



















1000
0100
0φcot10
0θcot01

H(θ,φ) =  

P = Morth H(θ,φ)  



Shear Matrix 

General case:  

 P = Morth STH(θ,φ)  



























−
+

−

−
+

−
−

−
+

−
−

=

1000

200

020

002

 

nearfar
nearfar

farnear

bottomtop
bottomtop

bottomtop

leftright
leftright

leftright

ST

𝑙𝑙𝑙𝑙 = 𝑥𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot 𝜃 
𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot 𝜃 
𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑦𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot𝜙 
𝑡𝑜𝑜 = 𝑦𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛 ∗ cot𝜙 

 
𝑥𝑚𝑚𝑚, 𝑥𝑚𝑚𝑚, 𝑦𝑚𝑚𝑚, 𝑦𝑚𝑚𝑚 are determined by intersections of the four side 
planes with the near plane   



E. Angel and D. Shreiner 

Effect on Clipping 

The projection matrix P = STH transforms the original clipping 
volume to the default clipping volume 

top view 

DOP DOP 

near plane 

far plane 

object 

clipping 
volume 

z = -1 

z =  1 

x = -1 
x = 1 

   distorted object 
(projects correctly) 



E. Angel and D. Shreiner 

Equivalency 



Simple Perspective 

Center of projection at the origin, projection plane is 
orthogonal to the z-direction and is parallel to the lens 

Projection plane z = d, d < 0 

E. Angel and D. Shreiner 



E. Angel and D. Shreiner 

Perspective Equations 

Consider top and side views 

dz
xxp /

= yp = dz
y
/

zp = d 
z
x

d
xp =

Top view side view 

Nonuniform foreshortening 



Perspective Transformation 

Perspective transformation is 

• Not linear 

• Not affine 

• Not reversible 



Homogeneous Coordinate Form 



















=

0/100
0100
0010
0001

d

M

Consider Pp = 𝐌Pc where 



















=

1
z
y
x

Pc



















=

dz
z
y
x

Pp

/

⇒   

A point measured in the 
clipping frame 

The corresponding point 
measured in the camera frame 



Perspective Division 

Note that w ≠ 1, so we must divide by w to return from 
homogeneous coordinates 

This perspective division yields the desired perspective 
equations  

 

 

 

xp = 
dz

x
/

yp = 
dz

y
/

zp = d 



Perspective with OpenGL 

View volume is determined by the angle of view (field of view) 

Viewing frustum 



E. Angel and D. Shreiner: 

Simple Perspective with OpenGL 

Consider a simple perspective with  
• the COP at the origin,  
• the near clipping plane at z = -1, and  
• a 90 degree field of view determined by the planes  x 

= ±z, y = ±z 
• Perspective projection matrix is 

 
 
 
 
 

Z=-near 

















=

0/100
0100
0010
0001

d

M where d = -1 



Simple Perspective with OpenGL 

 
 
 
 
 



















−
−
−

=



















−

=





































−

==

1
1
/
/

10100
0100
0010
0001

zy
zx

z
z
y
x

z
y
x

PQ M

A point P (x, y ,z, 1) is projected to a new point Q 



E. Angel and D. Shreiner 

Recall View Normalization 

The default projection is 
orthogonal (orthographic) 
projection 

Most graphics systems use view 
normalization 

• All other views are converted 
to the orthographic view by 
distorting the objects -- 
normalization 

• Allows use of the same 
pipeline for all views 



Perspective Projection and Normalization 



















−

=

0100
βα00
0010
0001

N

A point P=(x, y, z, 1) is transformed to a new point P’= (x’, 
y’, z’, w’) as 

x’ = x 
y’ = y 
z’ = αz+β 
w’ = -z 

Consider a matrix 

𝐏′ = 𝐍𝐍 

We will show the projection can be achieved by view 
normalization and an orthographic projection 



Perspective Projection and Normalization 

x’’ = -x/z 
y’’ = -y/z 
z’’ = -(α+β/z) 

Then, apply an orthographic projection along the z-axis, we have 

After perspective division, we can have P’ represented in 3D  
P’= (x’’, y’’, z’’) 

The result is exactly the same as performing perspective 
projection directly! 

𝑄 = 𝐌orth𝑃′ =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

−x/z
−y/z

−(α+β/z)
1

=

−x/z
−y/z

0
1

=

x
y
0
−𝑧

 



Picking α and β 

After applying view normalization, the new clipping volume 
should be transformed to the default clipping volume 
 
• The near plane z= - near needs to be mapped to z’’ = -1 
• The far plane z= - far needs to be mapped to z’’ =1 
• The sides x = ±z  and y = ±z needs to be mapped to x’’ = ± 

1, y’’ = ± 1 

What are α and β for? 



E. Angel and D. Shreiner 

Normalization Transformation 

Original clipping volume 

original object 

Normalized clipping volume 

distorted object 
projects correctly 



Picking α and β 

and  
far-near
farnear +

=α
arf-near
farnear2 ∗

=β

z’’ = -(α+β/z) 

z’’ = -(α+β/z)= -(α+β/(-near))=-1 
z =-near will transformed to  

z’’ = -(α+β/z)= -(α+β/(-far))=1 
z =-far will transformed to  



E. Angel and D. Shreiner 

OpenGL Perspective 
Frustum(left,right,bottom,top,near,far) 

• Frustum can be either 
symmetric about the z-
axis or asymmetric. 

• All are measured in the 
camera frame. 

 

For the symmetric case, 
𝐌 = 𝐌orth𝐍 



OpenGL Perspective 

How do we handle the asymmetric frustum? 

Convert the frustum to a symmetric one by performing a shear followed by 
a scaling to get the normalized perspective volume.  

Step 1 Shear: Transform the point 𝑙𝑙𝑙𝑙+𝑟𝑟𝑟𝑟𝑟
2

, 𝑡𝑡𝑡+𝑏𝑏𝑏𝑏𝑏𝑏
2

,−𝑛𝑛𝑛𝑛  to 
(0,0,−𝑛𝑛𝑛𝑛) 

 



















=

1000
0100
0φcot10
0θcot01

)φθ,(H

where 
2near

rightleftθcot +
=

2near
tcot bottomop +

=ϕand 



OpenGL Perspective 

After shearing, the resulting frustum is described by  

2near-
left-right

±=x
2near-
bottom-top

±=y4 sides 

Near plane nearz −=

Far plane farz −=



OpenGL Perspective 

Step 2: Scaling 

𝐒 =

2𝑛𝑛𝑛𝑛
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙

0 0 0

0
2𝑛𝑛𝑛𝑛

𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏 0 0

0 0 1 0
0 0 0 0

 

Step 3: Perspective normalization N 

The final perspective matrix 

 

𝐌𝒑 = 𝐍𝐍𝐍 =

2𝑛𝑛𝑛𝑛
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0

𝑙𝑙𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0

0
2𝑛𝑛𝑛𝑛

𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡
𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏 0

0 0
𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

2𝑛𝑛𝑛𝑛 ∗ 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

0 0 −1 0

 

 

 



E. Angel and D. Shreiner 

Using Field of View: Perspective() 

An alternative and more convenient way is to use the field of view 

Perspective(fovy, aspect, near, far) often 
provides a better interface 

• Fovy is the angle between the 
top and the bottom planes 

• aspect = w/h of projection 
plane 

projection plane 



Using Field of View: Perspective() 

Enforce a symmetric frustum 
𝑙𝑙𝑙𝑙 = −𝑟𝑟𝑟𝑟𝑟 
𝑏𝑏𝑏𝑏𝑏𝑏 = −𝑡𝑡𝑡 

Frustum() ⟺Perspective() 
𝑓𝑓𝑓𝑓 = 2 tan−1

𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏
2𝑛𝑛𝑛𝑛

 

 
𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏 

𝑡𝑡𝑡 = tan
𝑓𝑓𝑓𝑓

2
∗ 𝑛𝑛𝑛𝑛 

 


	Topics
	Coordinate Systems in OpenGL
	Projections and View Normalization
	Oblique Projections
	General Shear
	Shear Matrix
	Shear Matrix
	Effect on Clipping
	Equivalency
	Simple Perspective
	Perspective Equations
	Perspective Transformation
	Homogeneous Coordinate Form
	Perspective Division
	Perspective with OpenGL
	Simple Perspective with OpenGL
	Simple Perspective with OpenGL
	Recall View Normalization
	Perspective Projection and Normalization
	Perspective Projection and Normalization
	Picking a and b
	Normalization Transformation
	Picking a and b
	OpenGL Perspective
	OpenGL Perspective
	OpenGL Perspective
	OpenGL Perspective
	Using Field of View: Perspective()
	Using Field of View: Perspective()

