Topics

Perspective Projection

Coordinate Systems in OpenGL

Projections and View Normalization

The default projection is orthogonal (orthographic) projection

Most graphics systems use view normalization

- All other views are converted to the orthographic view by distorting the objects -normalization
- Allows use of the same pipeline for all views

E. Angel and D. Shreiner

Oblique Projections

The OpenGL projection functions cannot produce general parallel projections - the oblique projection

It seems the cube has been sheared
Oblique Projection = Shear + Orthogonal Projection

General Shear

Shear Matrix

$x y$ shear (z values unchanged)

$$
\mathbf{H}(\theta, \phi)=\left[\begin{array}{cccc}
1 & 0 & \cot \theta & 0 \\
0 & 1 & \cot \varphi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Projection matrix

$$
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{H}(\theta, \phi)
$$

Shear Matrix

$$
\begin{gathered}
\text { General case: } \begin{array}{c}
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{S T H}(\theta, \phi) \quad \mathbf{S T}=\left[\begin{array}{cccc}
\frac{2}{\text { right }- \text { left }} & 0 & 0 & -\frac{\text { right }+ \text { left }}{\text { right }- \text { left }} \\
0 & \frac{2}{\text { top }- \text { bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top-bottom }} \\
0 & 0 & \frac{2}{\text { near }- \text { far }} & \frac{\text { far }+ \text { near }}{\text { far-near }} \\
0 & 0 & 0 & 1
\end{array}\right] \\
\text { left }=x_{\min }-\text { near } * \cot \theta \\
\text { right }=x_{\max }-\text { near } * \cot \theta \\
\text { bottom }=y_{\min }-\text { near } * \cot \phi \\
\text { top }=y_{\max }-\text { near } * \cot \phi
\end{array}
\end{gathered}
$$

$x_{\min }, x_{\max }, y_{\min }, y_{\max }$ are determined by intersections of the four side planes with the near plane

Effect on Clipping

The projection matrix $\mathbf{P}=$ STH transforms the original clipping volume to the default clipping volume

Equivalency

Simple Perspective

Center of projection at the origin, projection plane is orthogonal to the z-direction and is parallel to the lens

Projection plane $z=d, d<0$

E. Angel and D. Shreiner

Perspective Equations

Consider top and side views

side view
E. Angel and D. Shreiner

$$
\frac{x_{p}}{d}=\frac{x}{z} \Rightarrow x_{p}=\frac{x}{z / d} \quad y_{\mathrm{p}}=\frac{y}{z / d} \quad z_{\mathrm{p}}=d
$$

Perspective Transformation

Perspective transformation is

- Not linear
- Not affine
- Not reversible

Homogeneous Coordinate Form

Consider $\mathrm{P}_{\mathrm{p}}=\mathrm{MP}_{\mathrm{c}}$ where

A point measured in the clipping frame

$$
P_{c}=\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \mathbf{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \Rightarrow P_{p}=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
$$

Perspective Division

Note that $w \neq 1$, so we must divide by w to return from homogeneous coordinates

This perspective division yields the desired perspective equations

$$
x_{\mathrm{p}}=\frac{x}{z / d} \quad y_{\mathrm{p}}=\frac{y}{z / d} \quad z_{\mathrm{p}}=d
$$

Perspective with OpenGL

View volume is determined by the angle of view (field of view)

Simple Perspective with OpenGL

Consider a simple perspective with

- the COP at the origin,
- the near clipping plane at $z=-1$, and
- a 90 degree field of view determined by the planes x
$= \pm z, y= \pm z$
- Perspective projection matrix is

$$
\mathbf{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \text { where } \mathrm{d}=-1
$$

E. Angel and D. Shreiner:

Simple Perspective with OpenGL

A point $P(x, y, z, 1)$ is projected to a new point Q

$$
Q=\mathbf{M} P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
-z
\end{array}\right]=\left[\begin{array}{c}
-x / z \\
-y / z \\
-1 \\
1
\end{array}\right]
$$

Recall View Normalization

The default projection is orthogonal (orthographic) projection

Most graphics systems use view normalization

- All other views are converted to the orthographic view by distorting the objects -normalization
- Allows use of the same pipeline for all views

E. Angel and D. Shreiner

Perspective Projection and Normalization

We will show the projection can be achieved by view normalization and an orthographic projection

Consider a matrix $\quad \mathbf{N}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0\end{array}\right]$
A point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1)$ is transformed to a new point $\mathrm{P}^{\prime}=\left(\mathrm{x}^{\prime}\right.$, $y^{\prime}, z^{\prime}, w^{\prime}$) as

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{N P} \\
& x^{\prime}=x \\
& y^{\prime}=y \\
& z^{\prime}=\alpha z+\beta \\
& w^{\prime}=-z
\end{aligned}
$$

Perspective Projection and Normalization

After perspective division, we can have P^{\prime} represented in 3D

$$
\begin{gathered}
P^{\prime}=\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right) \\
x^{\prime \prime}=-x / z \\
y^{\prime \prime}=-y / z \\
z^{\prime \prime}=-(\alpha+\beta / z)
\end{gathered}
$$

Then, apply an orthographic projection along the z-axis, we have

$$
Q=\mathbf{M}_{\text {orth }} P^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-x / z \\
-y / z \\
-(\alpha+\beta / z) \\
1
\end{array}\right]=\left[\begin{array}{c}
-x / z \\
-y / z \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0 \\
-z
\end{array}\right]
$$

The result is exactly the same as performing perspective projection directly!

Picking α and β

What are α and β for?

After applying view normalization, the new clipping volume should be transformed to the default clipping volume

- The near plane $z=-$ near needs to be mapped to $z "=-1$
- The far plane $z=-$ far needs to be mapped to z " $=1$
- The sides $x= \pm z$ and $y= \pm z$ needs to be mapped to $x "= \pm$ $1, y^{\prime \prime}= \pm 1$

Normalization Transformation

Original clipping volume
Normalized clipping volume

E. Angel and D. Shreiner

Picking α and β

$$
z^{\prime \prime}=-(\alpha+\beta / z)
$$

z =-near will transformed to
$z^{\prime \prime}=-(\alpha+\beta / z)=-(\alpha+\beta /(-$ near $))=-1$
z =-far will transformed to

$$
z^{\prime \prime}=-(\alpha+\beta / z)=-(\alpha+\beta /(-f a r))=1
$$

$$
\alpha=\frac{\text { near }+ \text { far }}{\text { near }-\mathrm{far}} \text { and } \beta=\frac{2 \text { near } * \text { far }}{\text { near }-\mathrm{far}}
$$

OpenGL Perspective

Frustum(left, right, bottom, top,near,far)

- Frustum can be either symmetric about the zaxis or asymmetric.
- All are measured in the camera frame.

OpenGL Perspective

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by a scaling to get the normalized perspective volume.

Step 1 Shear: Transform the point $\left(\frac{\text { left }+ \text { right }}{2}, \frac{\text { top }+ \text { bottom }}{2},-n e a r\right)$ to (0,0,-near)

$$
\mathbf{H}(\theta, \varphi)=\left[\begin{array}{cccc}
1 & 0 & \cot \theta & 0 \\
0 & 1 & \cot \varphi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $\cot \theta=\frac{\text { left }+ \text { right }}{2 \text { near }}$ and $\cot \varphi=\frac{\text { top }+ \text { bottom }}{2 \text { near }}$

OpenGL Perspective

After shearing, the resulting frustum is described by
4 sides $\quad x= \pm \frac{\text { right-left }}{-2 \text { near }} \quad y= \pm \frac{\text { top-bottom }}{-2 \text { near }}$

Near plane $z=-n e a r$

Far plane $\quad Z=-$ far

OpenGL Perspective

Step 2: Scaling

$$
\mathbf{S}=\left[\begin{array}{cccc}
\frac{2 \text { near }}{\text { right }- \text { left }} & 0 & 0 & 0 \\
0 & \frac{2 \text { near }}{\text { top }- \text { bottom }} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Step 3: Perspective normalization \mathbf{N}
The final perspective matrix

$$
\mathbf{M}_{\boldsymbol{p}}=\mathbf{N S H}=\left[\begin{array}{cccc}
\frac{2 \text { near }}{\text { right }- \text { left }} & 0 & \frac{\text { left }+ \text { right }}{\text { right }- \text { left }} & 0 \\
0 & \frac{2 \text { near }}{\text { top }- \text { bottom }} & \frac{\text { bottom }+ \text { top }}{\text { top }- \text { bottom }} & 0 \\
0 & 0 & \frac{\text { near }+ \text { far }}{\text { near }- \text { far }} & \frac{\text { 2near } * \text { far }}{\text { near }- \text { far }} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Using Field of View: Perspective()

An alternative and more convenient way is to use the field of view
Perspective(fovy, aspect, near, far) often provides a better interface

Using Field of View: Perspective()

Enforce a symmetric frustum

$$
\begin{gathered}
\text { left }=- \text { right } \\
\text { bottom }=- \text { top }
\end{gathered}
$$

Frustum() \Leftrightarrow Perspective()

$$
\text { fovy }=2 \tan ^{-1} \frac{\text { top }- \text { bottom }}{2 \text { near }}
$$

$$
\text { left }=\text { aspect } * \text { bottom }
$$

$$
t o p=\tan \left(\frac{\text { fovy }}{2}\right) * \text { near }
$$

