Topics

Perspective Projection

Coordinate Systems in OpenGL

Projections and View Normalization

The default projection is Distort Orthographic orthogonal (orthographic) (normalize) projection projection Most graphics systems use *view* normalization All other views are converted to the orthographic view by distorting the objects -normalization Allows use of the same pipeline for all views

E. Angel and D. Shreiner

Oblique Projections

The OpenGL projection functions cannot produce general parallel projections – the oblique projection

E. Angel and D. Shreine

It seems the cube has been sheared

Oblique Projection = Shear + Orthogonal Projection

General Shear

Shear Matrix

$\mathbf{H}(\theta, \phi) = \begin{bmatrix} 1 & 0 & \cot \theta & 0 \\ 0 & 1 & \cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Projection matrix

$$\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{H}(\theta, \phi)$$

Shear Matrix

$$\mathbf{General \ case:} \qquad \mathbf{P} = \mathbf{M}_{\text{orth}} \ \mathbf{STH}(\theta, \phi) \qquad \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$left = x_{min} - near * \cot \theta$$
$$right = x_{max} - near * \cot \theta$$
$$bottom = y_{min} - near * \cot \phi$$
$$top = y_{max} - near * \cot \phi$$

 x_{min} , x_{max} , y_{min} , y_{max} are determined by intersections of the four side planes with the *near* plane

Effect on Clipping

The projection matrix P = STH transforms the original clipping volume to the default clipping volume

Equivalency

E. Angel and D. Shreiner

Simple Perspective

Center of projection at the origin, projection plane is orthogonal to the z-direction and is parallel to the lens

E. Angel and D. Shreiner

Perspective Equations

Consider top and side views

Perspective Transformation

Perspective transformation is

- Not linear
- Not affine
- Not reversible

Homogeneous Coordinate Form

Perspective Division

Note that $w \neq 1$, so we must divide by w to return from homogeneous coordinates

This *perspective division* yields the desired perspective equations

$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

Perspective with OpenGL

View volume is determined by the angle of view (field of view)

Simple Perspective with OpenGL

Consider a simple perspective with

- the COP at the origin,
- the near clipping plane at z = -1, and
- a 90 degree field of view determined by the planes $x = \pm z$, $y = \pm z$
- Perspective projection matrix is

E. Angel and D. Shreiner:

Simple Perspective with OpenGL

A point P (x, y ,z, 1) is projected to a new point Q

$$Q = \mathbf{M}P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \\ -1 \\ 1 \end{bmatrix}$$

Recall View Normalization

- The default projection is orthogonal (orthographic) projection
- Most graphics systems use *view normalization*
 - All other views are converted to the orthographic view by distorting the objects -normalization
 - Allows use of the same pipeline for all views

E. Angel and D. Shreiner

Perspective Projection and Normalization

We will show the projection can be achieved by *view normalization* and an *orthographic projection*

Consider a matrix
$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

A point P=(x, y, z, 1) is transformed to a new point P'= (x', y', z', w') as P' = NP

$$x' = x$$

$$y' = y$$

$$z' = \alpha z + \beta$$

$$w' = -z$$

Perspective Projection and Normalization

After perspective division, we can have P' represented in 3D

P'= (x", y", z")

$$x'' = -x/z$$

 $y'' = -y/z$
 $z'' = -(\alpha + \beta/z)$

Then, apply an orthographic projection along the z-axis, we have

$$Q = \mathbf{M}_{\text{orth}} P' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -x/z \\ -y/z \\ -(\alpha + \beta/z) \\ 1 \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ -z \end{bmatrix}$$

The result is exactly the same as performing perspective projection directly!

Picking α and β

What are α and β for?

After applying view normalization, the new clipping volume should be transformed to the default clipping volume

- The near plane z = -near needs to be mapped to z'' = -1
- The far plane z = -far needs to be mapped to z'' = 1
- The sides $x = \pm z$ and $y = \pm z$ needs to be mapped to $x'' = \pm 1$, $y'' = \pm 1$

Normalization Transformation

E. Angel and D. Shreiner

Picking α and β

$$z'' = -(\alpha + \beta/z)$$

z =-near will transformed to z'' = $-(\alpha+\beta/z)=-(\alpha+\beta/(-near))=-1$ z =-far will transformed to z'' = $-(\alpha+\beta/z)=-(\alpha+\beta/(-far))=1$

$$\alpha = \frac{\text{near} + \text{far}}{\text{near} - \text{far}}$$
 and $\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$

Frustum(left,right,bottom,top,near,far)

- Frustum can be either symmetric about the z-axis or asymmetric.
- All are measured in the camera frame.

E. Angel and D. Shreiner

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by a scaling to get the normalized perspective volume.

Step 1 Shear: Transform the point $\left(\frac{left+right}{2}, \frac{top+bottom}{2}, -near\right)$ to (0,0,-near) $\mathbf{H}(\theta, \phi) = \begin{bmatrix} 1 & 0 & \cot \theta & 0 \\ 0 & 1 & \cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ where $\cot \theta = \frac{left+right}{2near}$ and $\cot \varphi = \frac{top+bottom}{2near}$

After shearing, the resulting frustum is described by

4 sides
$$x = \pm \frac{\text{right - left}}{-2\text{near}}$$
 $y = \pm \frac{\text{top - bottom}}{-2\text{near}}$

Near plane z = -near

Far plane
$$z = -far$$

Step 2: Scaling $\mathbf{S} = \begin{bmatrix} \frac{2near}{right - left} & 0 & 0 & 0 \\ 0 & \frac{2near}{top - bottom} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Step 3: Perspective normalization N

The final perspective matrix

$$\mathbf{M}_{p} = \mathbf{NSH} = \begin{bmatrix} \frac{2near}{right - left} & 0 & \frac{left + right}{right - left} & 0 \\ 0 & \frac{2near}{top - bottom} & \frac{bottom + top}{top - bottom} & 0 \\ 0 & 0 & \frac{near + far}{near - far} & \frac{2near * far}{near - far} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Using Field of View: Perspective()

An alternative and more convenient way is to use the field of view

Perspective(fovy, aspect, near, far) often provides a better interface

Using Field of View: Perspective()

Enforce a symmetric frustum left = -right bottom = -topFrustum() \Leftrightarrow Perspective() $fovy = 2 \tan^{-1} \frac{top - bottom}{2near}$

$$left = aspect * bottom$$
$$top = tan\left(\frac{fovy}{2}\right) * near$$