
Announcement

Project 1 has been posted online and in dropbox

Due: 11:59:59 pm, Friday, October 14

Project 1: Interactive Viewing of Two Teapots

How to create a teapot?

Before OpenGL 3.0, glutSolidTeapot

However, the function glutSolidTeapot is deprecated

Create a model or use an existing model

An Obj Model

An obj file stores an existing model

An obj file is structured in lines.

• The lines starting with # are comments

• “o” introduces a new object

• For each following line,
• v introduces a vertex
• vn introduces a normal
• f introduces a face, using vertex indices, starting at 1

An Example of a Teapot Model

A teapot.obj downloaded from http://graphics.stanford.edu/courses/cs148-
10-summer/as3/code/as3/teapot.obj

v -3.000000 1.800000 0.000000
v -2.991600 1.800000 -0.081000
v -2.991600 1.800000 0.081000

…

f 2968 2970 3004

f 3022 3021 3001

f 3001 3004 3022

http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
http://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj

An Obj Model

Load a model

void load_obj(const char* filename, vector<vec4>& vertices,
vector<GLushort>& elements,vector<vec3>& normals)

Use the model

glBufferData(GL_ARRAY_BUFFER, vertices.size()*sizeof(vec4),
&vertices[0], GL_STATIC_DRAW);

Display

glDrawElements(GL_TRIANGLES,
elements.size()*sizeof(GLushort), GL_UNSIGNED_SHORT, 0);

The indices in the element array buffer provide the topology of the
model.

https://en.wikibooks.org/wiki/OpenGL_Programming/Modern_OpenGL_Tutorial_Load_OBJ

More Obj Models

http://goanna.cs.rmit.edu.au/~pknowles/

Topic

Chapter 4. Angel and Shreiner

Model view matrix and projection matrix

E. Angel and D. Shreiner

Three Basic Elements in Viewing

One or more objects

A viewer with a projection surface
• Planar geometric projections

– standard projections project onto a plane
– preserve lines but not necessarily angles

• Nonplanar projections are needed for
applications such as map construction

Projectors that go from the object(s) to
the projection surface

• Projectors are lines that either
– converge at a center of projection
– are parallel

E. Angel and D. Shreiner

Perspective Projection

Projectors coverge at center of projection

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Perspective Projection

Objects further from viewer are projected smaller than
the same sized objects closer to the viewer (diminution)

• Looks realistic

Equal distances along a line may be not projected into
equal distances (nonuniform foreshortening)

Angles are preserved only in planes parallel to the
projection plane

More difficult to construct by hand than parallel
projections (but not more difficult by computer)

Computer Viewing

There are three aspects of the viewing process, all of which
are implemented in the pipeline,

• Positioning the camera
–Setting the model-view matrix
–Transforming the coordinates in the object frame to the

camera frame
• Selecting a lens

–Setting the projection matrix
–Attributes of the camera, e.g., focal length, etc
–Transforming the coordinates in the camera frame to the clip

coordinates frame
• Clipping

–Setting the view volume

Important Transformations in OpenGL

Object (or model) coordinates

World coordinates

Eye (or camera) coordinates

Clip coordinates

Normalized device coordinates

Window (or screen) coordinates

Projection transformation 4D4D

Model-view transformation 4D4D

Perspective division 4D  3D

Viewport transformation
3D2D+depth

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Pipeline View

 modelview
transformation

 projection
transformation

perspective
 division

clipping
Viewport
transformation

4D → 3D

against default cube 3D → 2D

E. Angel and D. Shreiner

Step1: Derive the Model-view Matrix

In OpenGL, initially the object and camera frames are the same
• Default model-view matrix is an identity

The camera is located at origin and points in the negative z direction

Problem: Cannot see the objects behind the camera -- objects with
positive z values

Moving the Camera Frame

we can either
• Move the objects along the negative z direction

–Classical viewing: viewer is fixed
–Translate the object/world frame

• Move the camera along the positive z direction
–Camera viewing: objects are fixed
–Translate the camera frame

They are equivalent and are determined by the model-view matrix M
• representing a translation (Translate(0.0,0.0,-d), d > 0

E. Angel and D. Shreiner

Moving the Camera Frame

default frames

frames after translation by –d
 d > 0

𝑃𝑐 = 𝐌𝑃

𝐌 = 𝐓 =

1 0 0 0
0 1 0 0
0 0 1 −𝑑
0 0 0 1

E. Angel and D. Shreiner

Moving the Camera

We can move the camera to any desired position by a
sequence of rotations and translations

Example: side view
• Rotate the camera
• Move it away from origin
• Model-view matrix M = TR

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL code

Last transformation specified is first to be applied

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);
mat4 ry = RotateY(90.0);
mat4 m = t*ry;

Example: Create an Isometric View of a Cube

Step 1: rotate the cube about the x-axis by 45 degrees – see the
other two faces symmetrically

Step 2: rotate the cube about the y-axis by -35.26 degrees

Step 3: move the camera away from the cube

E. Angel and D. Shreiner

𝐌 = 𝐓𝐑y𝐑x

The LookAt Function

The GLU library contained the function gluLookAt to form
the required modelview matrix through a simple interface

Replaced by LookAt() in mat.h
• Can concatenate with modeling transformations

Need to set an up direction

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

Objective: construct a new frame with
• the origin at the eye point,
• The view plane normal (vpn) as one

coordinate direction
• Two other orthogonal directions as the other

two coordinate directions

E. Angel and D. Shreiner

LookAt(eye, at, up)

at point – the point (e.g., the
object center) the camera looks at

eye point – camera specified in
the object frame

vpn

LookAt(eye, at, up)

𝐌 =

−𝑢𝑥 −𝑢𝑦 −𝑢𝑧 −𝐮 ∙ 𝐯𝐯𝐯
𝑣𝑥 𝑣𝑦 𝑣𝑧 𝐯 ∙ 𝐯𝐯𝐯
−𝑛𝑥 −𝑛𝑦 −𝑛𝑧 −𝐧 ∙ 𝐯𝐯𝐯

0 0 0 1

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Other Viewing APIs

The LookAt function is only one possible API for positioning
the camera

Others include
• View reference point, view plane normal, view up (PHIGS,

GKS-3D)
• Yaw, pitch, roll
• Elevation, azimuth, twist
• Direction angles

E. Angel and D. Shreiner

Step2: Projections and Normalization

The default projection is
orthogonal (orthographic)
projection

For points within the view volume

In homogeneous coordinates

xp = x
yp = y
zp = 0

pp = Morthp



















=

1000
0000
0010
0001

orthM

Orthogonal Normalization

Default projection:
• the orthographic camera is at origin

• the default volume is enclosed in

Ortho(-1.0,1.0,-1.0,1.0,-
1.0,1.0)

A general orthogonal projection:
Ortho(left,right,bottom,top,
near,far)

The clipping volume is different
than the default

𝑥 = ±1, 𝑦 = ±1, 𝑧 = ±1

clipped out

z=0

2

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Orthogonal Viewing

Ortho(left,right,bottom,top,near,far)

All are measured in the camera frame

The 4 sides of clipping volume:
𝑥 = 𝑟𝑟𝑟𝑟𝑟
𝑥 = 𝑙𝑙𝑙𝑙
𝑦 = 𝑡𝑡𝑡

𝑦 = 𝑏𝑏𝑏𝑏𝑏𝑏
Form a projection matrix

E. Angel and D. Shreiner

Orthogonal Normalization

Find transformation to convert specified clipping volume
to default

Affine Transformation for Orthogonal Normalization

Two steps:
• Move center to origin
𝐓(−(𝑙𝑙𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟)/2,−(𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡)/2, (𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓)/2))

• Scale to have sides of length 2

𝐒(2/(𝑙𝑙𝑙𝑙 − 𝑟𝑟𝑟𝑟𝑟), 2/(𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏), 2/(𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓))



























−
+

−

−
+

−
−

−
−

−
−

==

1000

200

020

002

nearfar
nearfar

farnear

bottomtop
bottomtop

bottomtop

leftright
leftright

leftright

STN

Final Orthographic Projection Matrix

General orthogonal projection in 4D is

P = MorthST

	Announcement
	Project 1: Interactive Viewing of Two Teapots
	An Obj Model
	An Example of a Teapot Model
	An Obj Model
	More Obj Models
	Topic
	Three Basic Elements in Viewing
	Perspective Projection
	Perspective Projection
	Computer Viewing
	Important Transformations in OpenGL
	Pipeline View
	Step1: Derive the Model-view Matrix
	Moving the Camera Frame
	Moving the Camera Frame
	Moving the Camera
	OpenGL code
	Example: Create an Isometric View of a Cube
	The LookAt Function
	LookAt(eye, at, up)
	LookAt(eye, at, up)
	Other Viewing APIs
	Step2: Projections and Normalization
	Orthogonal Normalization
	OpenGL Orthogonal Viewing
	Orthogonal Normalization
	Affine Transformation for Orthogonal Normalization
	Final Orthographic Projection Matrix

