
Announcement 

Homework 2 has been posted online and in dropbox 

Due: 1:15 pm, Wednesday, October 5 

Both undergraduate and graduate students must answer the 
first 4 questions. The graduate students must answer the 5th 
question. 

 

 



Today’s Agenda 

An Example of Using Transformations 

Viewing 

 



Frames in OpenGL 

Object (or model) coordinates 

World coordinates 

Eye (or camera) coordinates 

Clip coordinates 

Normalized device coordinates 

Window (or screen) coordinates 

Frames for the 
application 
Centered at the 
camera origin 

Implementation 
of the pipeline 

4D Homogenous 
Coordinates  

3D Coordinates  
2D+depth 
Coordinates  



Two Important Transformations in OpenGL 

Object (or model) coordinates 

World coordinates 

Eye (or camera) coordinates 

Clip coordinates 

Normalized device coordinates 

Window (or screen) coordinates 

Projection 
transformation 

Model-view transformation 
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Using the Model-view Matrix 

In OpenGL the model-view matrix is used to 
• Position the camera 

–Can be done by rotations and translations but is often easier to 
use a LookAt function 

• Build models of objects  

The projection matrix is used to define the view volume and to 
select a camera lens 

Although these matrices are no longer part of the OpenGL state, it is 
usually a good strategy to create them in our own applications  
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An Example of Using Transformations 

Problem: build a cube and use idle function to 
rotate a cube and mouse function to change 
direction of rotation  

Start with a program that draws a cube in a 
standard way 

• Centered at origin 
• Sides aligned with axes 



Representing a Mesh 

Consider a mesh 

 
 

 

 

There are 8 vertices,12 edges, and 6 polygons 

Each vertex has a location vi = (xi yi zi) 

0 

5 6 

2 

4 7 

1 

3 
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Simple Representation 

Define each polygon by the geometric 
locations of its vertices 

Leads to OpenGL code such as 

 

 

Inefficient and unstructured 
• Consider moving a vertex to a new location 
• Must search for all occurrences  

vertex[i] = vec3(x1, y1, z1); 
vertex[i+1] = vec3(x2, y2, z2); 
vertex[i+2] = vec3(x3, y3, z3); 
i+=3; 
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Define a Polygon: Inward and Outward Facing 
Polygons 

The order {v0,v3,v2,v1} and {v3,v2,v1,v0} are 
equivalent: the same polygon will be rendered 
by OpenGL but the order {v1,v2,v3,v0} is 
different 

The first two describe outward facing 
polygons for the front face using  

right-hand rule = counter-clockwise 
encirclement of outward-pointing normal  

The third one defines an inward-facing for 
the back face 

OpenGL can treat inward and  

outward facing polygons differently 
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Geometry vs Topology 

Generally it is a good idea to look for data structures 
that separate the geometry from the topology 

• Geometry: locations of the vertices 
• Topology: organization of the vertices and edges 

–a polygon is an ordered list of vertices with an edge 
connecting successive pairs of vertices and the last to 
the first 

–For the example of cubic 
• Each vertex is shared by 3 faces 
• Pairs of vertices define edges 
• Each edge is shared by two faces 

• Topology holds even if geometry changes 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Vertex Lists 

Put the geometry in an array 

Use pointers from the vertices into this array 

Introduce a polygon list 
x1 y1 z1 
x2 y2 z2 
x3 y3 z3 
x4 y4 z4 
x5 y5 z5. 
x6 y6 z6 
x7 y7 z7 
x8 y8 z8 

P1 
P2 
P3 
P4 
P5 

v1 
v7 
v6 

v8 
v5 
v6 

topology 

geometry 
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Shared Edges 

Vertex lists will draw filled polygons correctly 
but if we draw the polygon by its edges, 
shared edges are drawn twice 

 

 

 

Can store mesh by edge list 
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Edge List 

v1 v2 

v7 

v6 
v8 

v5 

v3 

e1 

e8 

e3 

e2 

e11 

e6 

e7 

e10 

e5 

e4 

e9 

e12 

e1 
e2 
e3 
e4 
e5 
e6 
e7 
e8 
e9 

x1 y1 z1 
x2 y2 z2 
x3 y3 z3 
x4 y4 z4 
x5 y5 z5. 
x6 y6 z6 
x7 y7 z7 
x8 y8 z8 
 

v1 
v6 

Note polygons are 
not represented 
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Modeling a Cube 

typedef vex4 point4; 
point4 vertices[8] = {point4(-1.0,-1.0,-1.0,1.0),  
  point4(1.0,-1.0,-1.0,1.0), point4(1.0,1.0,-1.0,1.0),  
  point4(-1.0,1.0,-1.0,1.0), point4(-1.0,-1.0,1.0,1.0),  
  point4(1.0,-1.0,1.0,1.0), point4(1.0,1.0,1.0,1.0),  
  point4(-1.0,1.0,1.0,1.0)}; 

typedef vec4 color4; 
color4 colors[8] = {color4(0.0,0.0,0.0,1.0),  
  color4(1.0,0.0,0.0,1.0), color4(1.0,1.0,0.0,1.0),  
  color4(0.0,1.0,0.0,1.0), color4(0.0,0.0,1.0,1.0),  
  color4(1.0,0.0,1.0,1.0), color4(1.0,1.0,1.0,1.0),  
  color4(0.0,1.0,1.0,1.0}); 

Define global arrays for vertices and colors 
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Drawing a triangle from a list of indices  

Draw two triangles from a list of indices vertices for 
each face and assign color to each index 

int Index = 0; 
void quad( int a, int b, int c, int d ) 
{ 
    colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++; 
    colors[Index] = vertex_colors[b]; points[Index] = vertices[b]; Index++; 
    colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++; 
    colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++; 
    colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++; 
    colors[Index] = vertex_colors[d]; points[Index] = vertices[d]; Index++; 
} 
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Draw cube from faces 

void colorcube( ) 
{ 
    quad(0,3,2,1); 
    quad(2,3,7,6); 
    quad(0,4,7,3); 
    quad(1,2,6,5); 
    quad(4,5,6,7); 
    quad(0,1,5,4); 
} 

0 

5 6 

2 

4 7 

1 

3 
Note that vertices are ordered so that  
we obtain correct outward facing normals 
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Efficiency 

The weakness of our approach is that we are building the 
model in the application and must do many function calls to 
draw the cube 

Drawing a cube by its faces in the most straight forward way 
used to require 

• 6 glBegin, 6 glEnd  
• 6 glColor 
• 24 glVertex 
• More if we use texture and lighting 
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Spinning the Cube 

void main(int argc, char **argv)  
{     
    glutInit(&argc, argv); 
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | 
       GLUT_DEPTH); 
    glutInitWindowSize(500, 500); 
    glutCreateWindow("colorcube"); 
    glutReshapeFunc(myReshape); 
    glutDisplayFunc(display); 
    glutIdleFunc(spinCube); 
    glutMouseFunc(mouse); 
    glEnable(GL_DEPTH_TEST); 
    glutMainLoop(); 
} 
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Idle and Mouse callbacks 

void spinCube()  
{ 
 theta[axis] += 2.0; 
 if( theta[axis] > 360.0 ) theta[axis] -= 
360.0; 
 glutPostRedisplay(); 
} 

void mouse(int btn, int state, int x, int y) 
{ 
   if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)  
           axis = 0; 
   if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)  
           axis = 1; 
   if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)  
           axis = 2; 
} 



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 

Display callback 

void display() 
{ 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
   glUniform3fv(theta, 1, Theta ); //or glUniformMatrix 
   glDrawArrays(GL_TRIANGLES, 0, NumVertices ); 
   glutSwapBuffers(); 
} 

We can form matrix in application and send to shader and let 
shader do the rotation or we can send the angle and axis to the 
shader and let the shader form the transformation matrix and 
then do the rotation 
 
More efficient than transforming data in application and 
resending the data 
 



Vertex Shader 
#version 150 
in  vec4 vPosition; 
in  vec4 vColor; 
out vec4 color; 
uniform vec3 theta; 
 
void main()  
{ 
    // Compute the sines and cosines of theta for each of 
    //   the three axes in one computation. 
    vec3 angles = radians( theta ); 
    vec3 c = cos( angles ); 
    vec3 s = sin( angles ); 
      mat4 rx = mat4( 1.0,  0.0,  0.0, 0.0, 
      0.0,  c.x,  s.x, 0.0, 
      0.0, -s.x,  c.x, 0.0, 
      0.0,  0.0,  0.0, 1.0 ); 
… 

E. Angel and D. Shreiner 



Vertex Shader 
… 
       mat4 ry = mat4( c.y, 0.0, -s.y, 0.0, 
      0.0, 1.0,  0.0, 0.0, 
      s.y, 0.0,  c.y, 0.0, 
      0.0, 0.0,  0.0, 1.0 ); 
 
       mat4 rz = mat4( c.z, -s.z, 0.0, 0.0, 
      s.z,  c.z, 0.0, 0.0, 
      0.0,  0.0, 1.0, 0.0, 
      0.0,  0.0, 0.0, 1.0 ); 
 
     
    color = vColor; 
    gl_Position = rz * ry * rx * vPosition; 
}  
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Fragment Shader 

#version 150 

in  vec4 color; 

out vec4 fColor; 

 

void main()  

{  

    fColor = color; 

}  

 



Reading Assignment 

Angel and Shreiner, Chapter 3.13 and 3.14 



Classical Viewing vs Computer Viewing 

Classical viewing: images formed by architects, artists, 
and engineers, e.g.,  

• Isometrics, elevations, etc. 
• Each object is assumed to constructed from flat 

principal faces  
– Buildings, polyhedra, manufactured objects 
– Many of them have three orthogonal directions 

 

Computer viewing: image generated by a computer 
graphics system 
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Classical Projections 
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Three Basic Elements in Viewing 

One or more objects 

A viewer with a projection surface 
• Planar geometric projections 

– standard projections project onto a plane 
– preserve lines but not necessarily angles 

• Nonplanar projections are needed for 
applications such as map construction 

Projectors that go from the object(s) to 
the projection surface 

• Projectors are lines that either 
– converge at a center of projection 
– are parallel 
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Perspective vs Parallel 

Mathematically parallel viewing 
is the limit of perspective viewing 

• Parallel viewing does not look real 
because far objects are scaled the 
same as near objects 

Fundamental distinction is 
between parallel and perspective 
viewing  

• Classical viewing developed 
different techniques for drawing 
each type of projection 

• Computer viewing employed two 
different type of views via the 
same pipeline 

Direction of 
projection 

Center of 
projection 

Perspective view 

Parallel view 
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Taxonomy of Planar Geometric Projections 

parallel perspective 

axonometric   multiview 
orthographic 

oblique 

isometric dimetric trimetric 

2 point 1 point 3 point 

Planar geometric projections 
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Orthographic Projection 

Projectors are orthogonal (perpendicular) to 
projection plane 

 

 

 

 

Preserve distances and angles 
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Multiview Orthographic Projection 

Multiple projections 
• In each projection, the projection plane is parallel to one principal face 
• Only show the faces parallel to the projection plane 

Note: isometric is not part of 
multiview orthographic view) 

front 

side 
top 

In CAD and architecture,  
we often display three  
multiviews plus isometric  
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Multiview Orthographic Projection 

Preserves both distances and angles 
• Shapes preserved 
• Can be used for measurements 

–Building plans 
–Manuals 

Cannot see what object really looks like because many 
surfaces hidden from view 

• Often we add the isometric 



Axonometric Projections 

Motivation: Allow the viewer to see more principal faces 

Projectors are still orthogonal to the projection plane 

Object can move relative to the projection plane 
• The projection plane may be not parallel to the principal face 

 

E. Angel and D. Shreiner  
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Types of Axonometric Projections 

Classify by how many angles of a corner of a projected 
cube are the same: 
• Trimetric: none 
• Dimetric: two 
• Isometric: three  

θ 1 

θ 3 θ 2 
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Axonometric Projections 

Used in CAD applications 

Can see three principal faces of a box-like object 

Lines are scaled (foreshortened) but can find scaling factors 
• Isometric view has 1 scaling factor for all directions and allows 

distance measurements 
• Dimetric has 2 scaling factors 
• Trimetric has 3 scaling factors  

Lines preserved but angles are not 
• Projection of a circle in general is an ellipse 

Some optical illusions possible 
• Parallel lines appear to diverge 
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Oblique Projection 

General parallel views 

Arbitrary relationship between projectors and projection plane 
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Perspective Projection 

Projectors coverge at center of projection 
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Vanishing Points 

Parallel lines (not parallel to the projection 
plane) on the object converge at a single point 
in the projection (the vanishing point)  

vanishing point 



Perspective Projection 
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Perspective Projection 

Objects further from viewer are projected smaller than 
the same sized objects closer to the viewer (diminution) 

• Looks realistic 

Equal distances along a line may be not projected into 
equal distances (nonuniform foreshortening) 

Angles are preserved only in planes parallel to the 
projection plane 

More difficult to construct by hand than parallel 
projections (but not more difficult by computer) 
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