
Announcement

Homework 2 has been posted online and in dropbox

Due: 1:15 pm, Wednesday, October 5

Both undergraduate and graduate students must answer the
first 4 questions. The graduate students must answer the 5th
question.

Today’s Agenda

An Example of Using Transformations

Viewing

Frames in OpenGL

Object (or model) coordinates

World coordinates

Eye (or camera) coordinates

Clip coordinates

Normalized device coordinates

Window (or screen) coordinates

Frames for the
application
Centered at the
camera origin

Implementation
of the pipeline

4D Homogenous
Coordinates

3D Coordinates
2D+depth
Coordinates

Two Important Transformations in OpenGL

Object (or model) coordinates

World coordinates

Eye (or camera) coordinates

Clip coordinates

Normalized device coordinates

Window (or screen) coordinates

Projection
transformation

Model-view transformation

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using the Model-view Matrix

In OpenGL the model-view matrix is used to
• Position the camera

–Can be done by rotations and translations but is often easier to
use a LookAt function

• Build models of objects

The projection matrix is used to define the view volume and to
select a camera lens

Although these matrices are no longer part of the OpenGL state, it is
usually a good strategy to create them in our own applications

E. Angel and D. Shreiner: Interactive Computer Graphics 6E ©
Addison-Wesley 2012

An Example of Using Transformations

Problem: build a cube and use idle function to
rotate a cube and mouse function to change
direction of rotation

Start with a program that draws a cube in a
standard way

• Centered at origin
• Sides aligned with axes

Representing a Mesh

Consider a mesh

There are 8 vertices,12 edges, and 6 polygons

Each vertex has a location vi = (xi yi zi)

0

5 6

2

4 7

1

3

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Representation

Define each polygon by the geometric
locations of its vertices

Leads to OpenGL code such as

Inefficient and unstructured
• Consider moving a vertex to a new location
• Must search for all occurrences

vertex[i] = vec3(x1, y1, z1);
vertex[i+1] = vec3(x2, y2, z2);
vertex[i+2] = vec3(x3, y3, z3);
i+=3;

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Define a Polygon: Inward and Outward Facing
Polygons

The order {v0,v3,v2,v1} and {v3,v2,v1,v0} are
equivalent: the same polygon will be rendered
by OpenGL but the order {v1,v2,v3,v0} is
different

The first two describe outward facing
polygons for the front face using

right-hand rule = counter-clockwise
encirclement of outward-pointing normal

The third one defines an inward-facing for
the back face

OpenGL can treat inward and

outward facing polygons differently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Geometry vs Topology

Generally it is a good idea to look for data structures
that separate the geometry from the topology

• Geometry: locations of the vertices
• Topology: organization of the vertices and edges

–a polygon is an ordered list of vertices with an edge
connecting successive pairs of vertices and the last to
the first

–For the example of cubic
• Each vertex is shared by 3 faces
• Pairs of vertices define edges
• Each edge is shared by two faces

• Topology holds even if geometry changes

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Lists

Put the geometry in an array

Use pointers from the vertices into this array

Introduce a polygon list
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

P1
P2
P3
P4
P5

v1
v7
v6

v8
v5
v6

topology

geometry

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shared Edges

Vertex lists will draw filled polygons correctly
but if we draw the polygon by its edges,
shared edges are drawn twice

Can store mesh by edge list

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Edge List

v1 v2

v7

v6
v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1
e2
e3
e4
e5
e6
e7
e8
e9

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

v1
v6

Note polygons are
not represented

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling a Cube

typedef vex4 point4;
point4 vertices[8] = {point4(-1.0,-1.0,-1.0,1.0),
 point4(1.0,-1.0,-1.0,1.0), point4(1.0,1.0,-1.0,1.0),
 point4(-1.0,1.0,-1.0,1.0), point4(-1.0,-1.0,1.0,1.0),
 point4(1.0,-1.0,1.0,1.0), point4(1.0,1.0,1.0,1.0),
 point4(-1.0,1.0,1.0,1.0)};

typedef vec4 color4;
color4 colors[8] = {color4(0.0,0.0,0.0,1.0),
 color4(1.0,0.0,0.0,1.0), color4(1.0,1.0,0.0,1.0),
 color4(0.0,1.0,0.0,1.0), color4(0.0,0.0,1.0,1.0),
 color4(1.0,0.0,1.0,1.0), color4(1.0,1.0,1.0,1.0),
 color4(0.0,1.0,1.0,1.0});

Define global arrays for vertices and colors

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Drawing a triangle from a list of indices

Draw two triangles from a list of indices vertices for
each face and assign color to each index

int Index = 0;
void quad(int a, int b, int c, int d)
{
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[b]; points[Index] = vertices[b]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[a]; points[Index] = vertices[a]; Index++;
 colors[Index] = vertex_colors[c]; points[Index] = vertices[c]; Index++;
 colors[Index] = vertex_colors[d]; points[Index] = vertices[d]; Index++;
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Draw cube from faces

void colorcube()
{
 quad(0,3,2,1);
 quad(2,3,7,6);
 quad(0,4,7,3);
 quad(1,2,6,5);
 quad(4,5,6,7);
 quad(0,1,5,4);
}

0

5 6

2

4 7

1

3
Note that vertices are ordered so that
we obtain correct outward facing normals

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Efficiency

The weakness of our approach is that we are building the
model in the application and must do many function calls to
draw the cube

Drawing a cube by its faces in the most straight forward way
used to require

• 6 glBegin, 6 glEnd
• 6 glColor
• 24 glVertex
• More if we use texture and lighting

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Spinning the Cube

void main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
 GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutCreateWindow("colorcube");
 glutReshapeFunc(myReshape);
 glutDisplayFunc(display);
 glutIdleFunc(spinCube);
 glutMouseFunc(mouse);
 glEnable(GL_DEPTH_TEST);
 glutMainLoop();
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Idle and Mouse callbacks

void spinCube()
{
 theta[axis] += 2.0;
 if(theta[axis] > 360.0) theta[axis] -=
360.0;
 glutPostRedisplay();
}

void mouse(int btn, int state, int x, int y)
{
 if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
 axis = 0;
 if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
 axis = 1;
 if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
 axis = 2;
}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Display callback

void display()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glUniform3fv(theta, 1, Theta); //or glUniformMatrix
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);
 glutSwapBuffers();
}

We can form matrix in application and send to shader and let
shader do the rotation or we can send the angle and axis to the
shader and let the shader form the transformation matrix and
then do the rotation

More efficient than transforming data in application and
resending the data

Vertex Shader
#version 150
in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main()
{
 // Compute the sines and cosines of theta for each of
 // the three axes in one computation.
 vec3 angles = radians(theta);
 vec3 c = cos(angles);
 vec3 s = sin(angles);
 mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
 0.0, c.x, s.x, 0.0,
 0.0, -s.x, c.x, 0.0,
 0.0, 0.0, 0.0, 1.0);
…

E. Angel and D. Shreiner

Vertex Shader
…
 mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
 0.0, 1.0, 0.0, 0.0,
 s.y, 0.0, c.y, 0.0,
 0.0, 0.0, 0.0, 1.0);

 mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,
 s.z, c.z, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0);

 color = vColor;
 gl_Position = rz * ry * rx * vPosition;
}

 E. Angel and D. Shreiner

Fragment Shader

#version 150

in vec4 color;

out vec4 fColor;

void main()

{

 fColor = color;

}

Reading Assignment

Angel and Shreiner, Chapter 3.13 and 3.14

Classical Viewing vs Computer Viewing

Classical viewing: images formed by architects, artists,
and engineers, e.g.,

• Isometrics, elevations, etc.
• Each object is assumed to constructed from flat

principal faces
– Buildings, polyhedra, manufactured objects
– Many of them have three orthogonal directions

Computer viewing: image generated by a computer
graphics system

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Classical Projections

E. Angel and D. Shreiner

Three Basic Elements in Viewing

One or more objects

A viewer with a projection surface
• Planar geometric projections

– standard projections project onto a plane
– preserve lines but not necessarily angles

• Nonplanar projections are needed for
applications such as map construction

Projectors that go from the object(s) to
the projection surface

• Projectors are lines that either
– converge at a center of projection
– are parallel

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Perspective vs Parallel

Mathematically parallel viewing
is the limit of perspective viewing

• Parallel viewing does not look real
because far objects are scaled the
same as near objects

Fundamental distinction is
between parallel and perspective
viewing

• Classical viewing developed
different techniques for drawing
each type of projection

• Computer viewing employed two
different type of views via the
same pipeline

Direction of
projection

Center of
projection

Perspective view

Parallel view

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Taxonomy of Planar Geometric Projections

parallel perspective

axonometric multiview
orthographic

oblique

isometric dimetric trimetric

2 point 1 point 3 point

Planar geometric projections

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Orthographic Projection

Projectors are orthogonal (perpendicular) to
projection plane

Preserve distances and angles

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Multiview Orthographic Projection

Multiple projections
• In each projection, the projection plane is parallel to one principal face
• Only show the faces parallel to the projection plane

Note: isometric is not part of
multiview orthographic view)

front

side
top

In CAD and architecture,
we often display three
multiviews plus isometric

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Multiview Orthographic Projection

Preserves both distances and angles
• Shapes preserved
• Can be used for measurements

–Building plans
–Manuals

Cannot see what object really looks like because many
surfaces hidden from view

• Often we add the isometric

Axonometric Projections

Motivation: Allow the viewer to see more principal faces

Projectors are still orthogonal to the projection plane

Object can move relative to the projection plane
• The projection plane may be not parallel to the principal face

E. Angel and D. Shreiner

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Types of Axonometric Projections

Classify by how many angles of a corner of a projected
cube are the same:
• Trimetric: none
• Dimetric: two
• Isometric: three

θ 1

θ 3 θ 2

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Axonometric Projections

Used in CAD applications

Can see three principal faces of a box-like object

Lines are scaled (foreshortened) but can find scaling factors
• Isometric view has 1 scaling factor for all directions and allows

distance measurements
• Dimetric has 2 scaling factors
• Trimetric has 3 scaling factors

Lines preserved but angles are not
• Projection of a circle in general is an ellipse

Some optical illusions possible
• Parallel lines appear to diverge

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Oblique Projection

General parallel views

Arbitrary relationship between projectors and projection plane

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Perspective Projection

Projectors coverge at center of projection

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Vanishing Points

Parallel lines (not parallel to the projection
plane) on the object converge at a single point
in the projection (the vanishing point)

vanishing point

Perspective Projection

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012

Perspective Projection

Objects further from viewer are projected smaller than
the same sized objects closer to the viewer (diminution)

• Looks realistic

Equal distances along a line may be not projected into
equal distances (nonuniform foreshortening)

Angles are preserved only in planes parallel to the
projection plane

More difficult to construct by hand than parallel
projections (but not more difficult by computer)

	Announcement
	Today’s Agenda
	Frames in OpenGL
	Two Important Transformations in OpenGL
	Using the Model-view Matrix
	An Example of Using Transformations
	Representing a Mesh
	Simple Representation
	Define a Polygon: Inward and Outward Facing Polygons
	Geometry vs Topology
	Vertex Lists
	Shared Edges
	Edge List
	Modeling a Cube
	Drawing a triangle from a list of indices
	Draw cube from faces
	Efficiency
	Spinning the Cube
	Idle and Mouse callbacks
	Display callback
	Vertex Shader
	Vertex Shader
	Fragment Shader
	Reading Assignment
	Classical Viewing vs Computer Viewing
	Classical Projections
	Three Basic Elements in Viewing
	Perspective vs Parallel
	Taxonomy of Planar Geometric Projections
	Orthographic Projection
	Multiview Orthographic Projection
	Multiview Orthographic Projection
	Axonometric Projections
	Types of Axonometric Projections
	Axonometric Projections
	Oblique Projection
	Perspective Projection
	Vanishing Points
	Perspective Projection
	Perspective Projection

