Today's Agenda

Affine transformation

Changing Representations

Any point or vector has a representation in a frame
$\mathbf{a}=\left[\begin{array}{cc}\alpha_{1} & \alpha_{2} \\ \alpha_{3} & \alpha_{4}\end{array}\right]$ in the first frame $\mathbf{b}=\left[\beta_{1} \beta_{2} \beta_{3} \beta_{4}\right]$ in the second frame
where $\alpha_{4}=\beta_{4}=1$ for points and $\alpha_{4}=\beta_{4}=0$ for vectors
We can change the representation from one frame to the other as

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b} \text { and } \quad \mathbf{b}=\left(\mathbf{M}^{\mathrm{T}}\right)^{-1} \mathbf{a}
$$

The matrix \mathbf{M} is 4×4 and specifies an affine transformation in homogeneous coordinates

Affine Transformations

Every linear transformation is equivalent to a change in frames
Every affine transformation preserves lines: a line in a frame transforms to a line in another frame

An affine transformation

- Characteristic of many physically important transformations
-Rigid body transformations: rotation, translation
-Scaling, shear
- has only 12 degrees of freedom because 4 of the elements in the matrix are fixed
- are a subset of all possible 4×4 linear transformations

Rotation in 2D

Consider rotation about the origin by θ degrees

- radius stays the same, angle increases by θ

Rotation about the z axis

Rotation about z axis in three dimensions leaves all points with the same z

- Equivalent to rotation in two dimensions in planes of constant z
$x^{\prime}=x \cos \alpha-y \sin \alpha$
$y^{\prime}=x \sin \alpha+y \cos \alpha$

$$
z^{\prime}=z
$$

- or in homogeneous coordinates

$$
\mathbf{p}^{\prime}=\mathbf{R}_{z}(\alpha) \mathbf{p}
$$

$\mathbf{p}^{\prime}=\mathbf{R}_{Z}(\alpha) \mathbf{p}$
Rotation Matrix $\leftarrow \mathbf{R}_{Z}(\alpha)=\left[\begin{array}{cccc}\cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation about x and y axes

Same argument as for rotation about z axis

- For rotation about x axis, x is unchanged
- For rotation about y axis, y is unchanged

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Inverses

Although we could compute inverse matrices by general formulas, we can use simple geometric observations

- Translation: $\mathbf{T}^{-1}\left(\mathrm{~d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)=\mathbf{T}\left(-\mathrm{d}_{\mathrm{x}},-\mathrm{d}_{\mathrm{y}},-\mathrm{d}_{\mathrm{z}}\right)$
- Rotation: $\mathbf{R}^{-1}(\theta)=\mathbf{R}(-\theta)$
- Holds for any rotation matrix
- Note that since $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$
$\mathbf{R}^{-1}(\theta)=\mathbf{R}^{\mathrm{T}}(\theta) \longrightarrow \mathbf{R}^{T}=\mathbf{R} \mathbf{R}^{-1}=I$ Rotation matrix is orthonormal matrix
- Scaling: $\mathbf{S}^{-1}\left(\mathrm{~s}_{\mathrm{x}}, \mathrm{s}_{\mathrm{y}}, \mathrm{s}_{\mathrm{z}}\right)=\mathbf{S}\left(1 / \mathrm{s}_{\mathrm{x}}, 1 / \mathrm{s}_{\mathrm{y}}, 1 / \mathrm{s}_{\mathrm{z}}\right)$
E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Multiple Transformations

We can form arbitrary affine transformation matrices by multiplying rotation, translation, and scaling matrices

Intuitive way: $\mathrm{p}^{\prime}=\mathrm{M}_{3}\left[\mathrm{M}_{2}\left(\mathrm{M}_{1} \mathrm{p}\right)\right]$ Pre-multiply
Alternative way: $\mathrm{p}^{\prime}=\left(\mathrm{M}_{3} \mathrm{M}_{2} \mathrm{M}_{1}\right) \mathrm{p}$ Post-multiply
Which one is better?
The same transformation is applied to many vertices,

- the matrix $\mathrm{M}=\mathrm{M}_{3} \mathrm{M}_{2} \mathrm{M}_{1}$ can be precomputed
- the computational cost of \mathbf{M} can be ignored compared to the cost of computing Mp for many vertices \mathbf{p}

Exercise: Composing Transformations

What order of R, S, T will produce this figure?
(a) TRSv
(b) RSTv
(c) TSRv
(d) RTSv

Exercise: Composing Transformations

General Rotation About the Origin

A general rotation about the origin can be decomposed into successive of rotations about the x, y, and z axes

$$
\mathbf{R}=\mathbf{R}_{\mathrm{z}}(\alpha) \mathbf{R}_{\mathrm{y}}(\beta) \mathbf{R}_{\mathrm{x}}(\gamma)
$$

α, β, γ are called the Euler angles

Important:

- \mathbf{R} is unique
- For a given order, rotations do not commute
- We can use rotations in another order but with different angles

Rotation About a Fixed Point Other than the Origin

- Move fixed point to origin
- Rotate around the origin
- Move fixed point back

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instancing

How do we describe multiple object in a scene?
Intuitive solution:
Specify the vertices for each object
A better solution:
Specify a set of simple objects with

- a convenient size,
- a convenient location,

E. Angel and D. Shreiner
- a convenient orientation

Instancing

In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

An occurrence of this object is an instance of the object class
We apply an instance transformation to its vertices to

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Rotation about An Arbitrary Vector

How do we achieve a rotation θ about an arbitrary vector?
Step 1: move the fixed point to the origin

$$
\mathbf{M}_{1}=\mathbf{T}\left(-\mathbf{p}_{0}\right)
$$

General Rotation about An Arbitrary Vector

Step 2: align the arbitrary vector $\mathbf{v}=\frac{\mathbf{p}_{2}-\mathbf{p}_{1}}{\left|\mathbf{p}_{2}-\mathbf{p}_{1}\right|}$ with the \mathbf{z}-axis by two rotations about the x -axis and y -axis with θ_{x} and θ_{y}, respectively

$$
\mathbf{M}_{2}=\mathbf{R}_{y}\left(\theta_{\mathrm{y}}\right) \mathbf{R}_{x}\left(\theta_{\mathrm{x}}\right)
$$

Step 3: rotate by θ about the z -axis

$$
\mathbf{M}_{3}=\mathbf{R}_{z}(\theta)
$$

Step2

General Rotation about An Arbitrary Vector

Step 4: undo the two rotations for aligning z-axis

$$
\mathbf{M}_{4}=\mathbf{R}_{x}\left(-\theta_{\mathrm{x}}\right) \mathbf{R}_{y}\left(-\theta_{\mathrm{y}}\right)
$$

Step 5: move the fixed point back

$$
\mathbf{M}_{5}=\mathbf{T}\left(\mathbf{p}_{0}\right)
$$

The overall transformation matrix is

$$
\mathbf{M}=\mathbf{M}_{5} \mathbf{M}_{4} \mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}
$$

How to Determine θ_{x} and θ_{y}

Let $\mathbf{v}=\left[\begin{array}{lll}\alpha_{x} & \alpha_{y} & \alpha_{z}\end{array}\right]^{T}$ and $\alpha_{x}{ }^{2}+\alpha_{y}{ }^{2}+\alpha_{z}{ }^{2}=1$
Compute $\mathbf{R}_{x}\left(\boldsymbol{\theta}_{\mathrm{x}}\right)$

$$
\cos \theta_{\mathrm{x}}=\frac{\alpha_{z}}{d} \quad \text { and } \quad \sin \theta_{\mathrm{x}}=\frac{\alpha_{y}}{d}
$$

$$
\mathbf{R}_{x}\left(\theta_{\mathrm{x}}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{\alpha_{z}}{d} & -\frac{\alpha_{y}}{d} & 0 \\
0 & \frac{\alpha_{y}}{d} & \frac{\alpha_{z}}{d} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

d is the projection of v on the $y-z$ plane

$$
d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}
$$

E. Angel and D. Shreiner

How to Determine θ_{x} and θ_{y}

Compute $\mathbf{R}_{y}\left(\boldsymbol{\theta}_{y}\right)$
$\cos \theta_{y}=d \quad$ and $\quad \sin \theta_{y}=-\alpha_{x}$

$$
\mathbf{R}_{y}\left(\theta_{\mathrm{y}}\right)=\left[\begin{array}{cccc}
d & 0 & -\alpha_{x} & 0 \\
0 & 1 & 0 & 0 \\
\alpha_{x} & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

An Example

Problem: rotate an object by 45 degrees about the line passing through the origin and the point ($1,2,3$)

Step1: Normalize the vector for rotation
$\mathbf{p}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Rightarrow \mathbf{v}=\frac{\mathbf{p}}{|\mathbf{p}|}=\left[\begin{array}{c}\frac{1}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} \\ 0\end{array}\right]$

An Example (Cont'd)

$\alpha_{x}=\frac{1}{\sqrt{14}}, \alpha_{y}=\frac{2}{\sqrt{14}}, \alpha_{z}=\frac{3}{\sqrt{14}}$,
Step2: rotate about the x-axis about θ_{x}
Calculate the angle θ_{x}

$$
\begin{gathered}
\cos \theta_{x}=\frac{\alpha_{z}}{d}=\frac{\alpha_{z}}{\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}} \\
\cos \theta_{x}=\frac{\alpha_{z}}{d}=\frac{3}{\sqrt{13}}
\end{gathered}
$$

An Example (Cont'd)

$\alpha_{x}=\frac{1}{\sqrt{14}}, \alpha_{y}=\frac{2}{\sqrt{14}}, \alpha_{z}=\frac{3}{\sqrt{14}}$,
Step3: rotate about the y -axis about $\theta_{y}=-\theta_{y}{ }^{\prime}$
Calculate the angle $\theta_{y}{ }^{\prime}$

$$
\begin{gathered}
\cos \theta_{y}^{\prime}=d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}} \\
\cos \theta_{y}^{\prime}=\sqrt{\frac{13}{14}}
\end{gathered}
$$

E. Angel and D. Shreiner

An Example (Cont'd)

Step4: rotate about the z-axis about 45 degrees
Step5: rotate about the y-axis about $-\theta_{y}$
Step6: rotate about the x -axis about $-\theta_{x}$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{R}_{x}\left(-\cos ^{-1} \frac{3}{\sqrt{13}}\right) \mathrm{R}_{y}\left(\cos ^{-1} \sqrt{\frac{13}{14}}\right) \mathrm{R}_{z}(45) \mathrm{R}_{y}\left(-\cos ^{-1} \sqrt{\frac{13}{14}}\right) \\
& \mathrm{R}_{x}\left(\cos ^{-1} \frac{3}{\sqrt{13}}\right) \\
= & {\left[\begin{array}{cccc}
\frac{2+13 \sqrt{2}}{28} & \frac{2-\sqrt{2}-3 \sqrt{7}}{14} & \frac{6-3 \sqrt{2}+4 \sqrt{7}}{28} & 0 \\
\frac{2-\sqrt{2}+3 \sqrt{7}}{14} & \frac{4+5 \sqrt{2}}{14} & \frac{6-3 \sqrt{2}-\sqrt{7}}{14} & 0 \\
\frac{6-3 \sqrt{2}-4 \sqrt{7}}{28} & \frac{6-3 \sqrt{2}+\sqrt{7}}{14} & \frac{18+5 \sqrt{2}}{28} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] . }
\end{aligned}
$$

