Today's Agenda

Affine transformation

Changing Representations

Any point or vector has a representation in a frame

 $\begin{array}{l} \textbf{a} = [\alpha_1 \ \alpha_2 \ \ \alpha_3 \ \alpha_4] \text{ in the first frame} \\ \textbf{b} = [\beta_1 \ \beta_2 \ \ \beta_3 \ \beta_4] \text{ in the second frame} \end{array}$

where $\alpha_4 = \beta_4 = 1$ for points and $\alpha_4 = \beta_4 = 0$ for vectors

We can change the representation from one frame to the other as

$a=M^{T}b$ and $b=(M^{T})^{-1}a$

The matrix \mathbf{M} is 4 x 4 and specifies an affine transformation in homogeneous coordinates

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

Every linear transformation is equivalent to a change in frames

Every affine transformation preserves lines: a line in a frame transforms to a line in another frame

An affine transformation

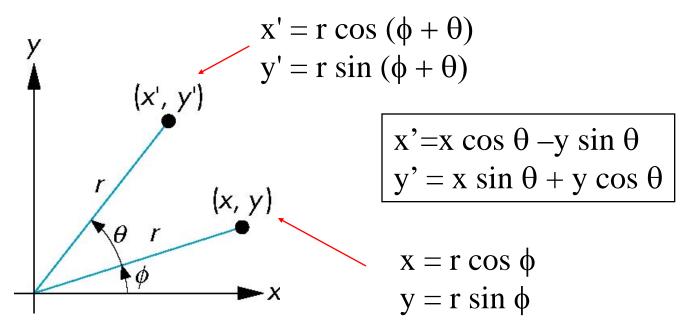
- Characteristic of many physically important transformations
 - -Rigid body transformations: rotation, translation
 - -Scaling, shear
- has only 12 degrees of freedom because 4 of the elements in the matrix are fixed
- are a subset of all possible 4 x 4 linear transformations

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation in 2D

Consider rotation about the origin by $\boldsymbol{\theta}$ degrees

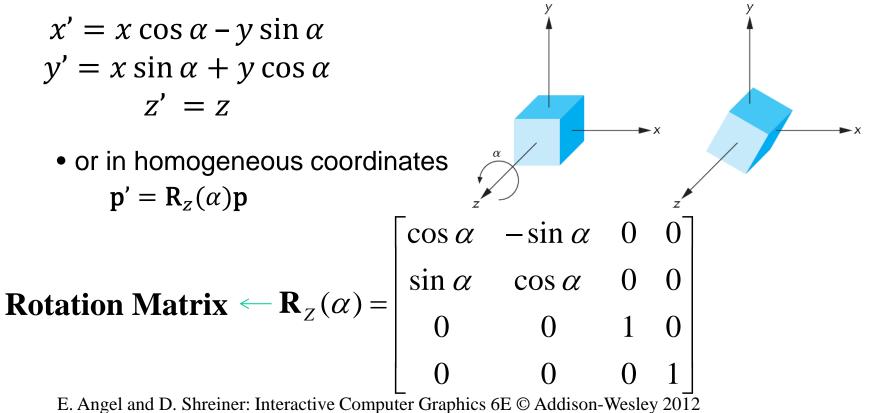
• radius stays the same, angle increases by $\boldsymbol{\theta}$



Rotation about the z axis

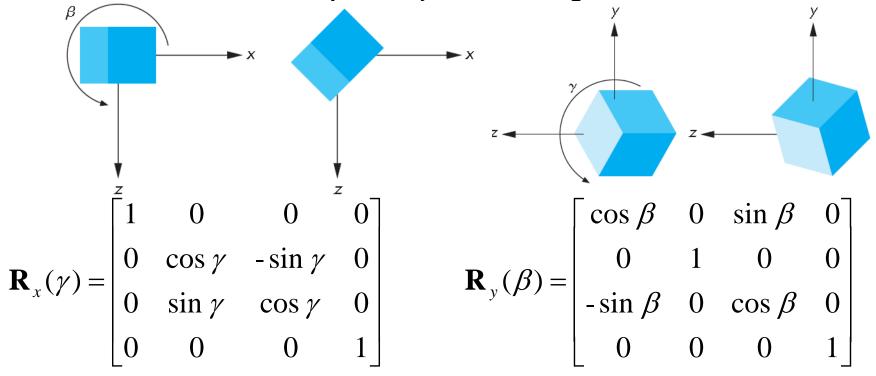
Rotation about z axis in three dimensions leaves all points with the same z

• Equivalent to rotation in two dimensions in planes of constant z



Same argument as for rotation about *z* axis

- For rotation about *x* axis, *x* is unchanged
- For rotation about y axis, y is unchanged



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Inverses

Although we could compute inverse matrices by general formulas, we can use simple geometric observations

- Translation: $\mathbf{T}^{-1}(\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_z) = \mathbf{T}(-\mathbf{d}_x, -\mathbf{d}_y, -\mathbf{d}_z)$
- Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$

–Holds for any rotation matrix

-Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ $\mathbf{R}^{-1}(\theta) = \mathbf{R}^{T}(\theta) \longrightarrow \mathbf{R}\mathbf{R}^{T} = \mathbf{R}\mathbf{R}^{-1} = I$ Rotation matrix is orthonormal matrix

• Scaling:
$$S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Multiple Transformations

We can form arbitrary affine transformation matrices by multiplying rotation, translation, and scaling matrices

Intuitive way:
$$p'=M_3[M_2(M_1p)]$$
 Pre-multiply

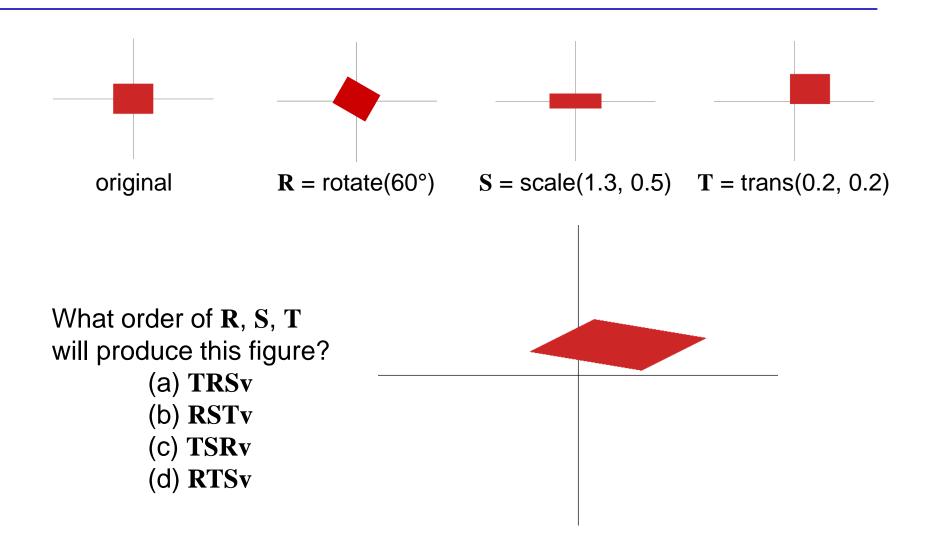
Alternative way: $p'=(M_3M_2M_1)p$ Post-multiply

Which one is better?

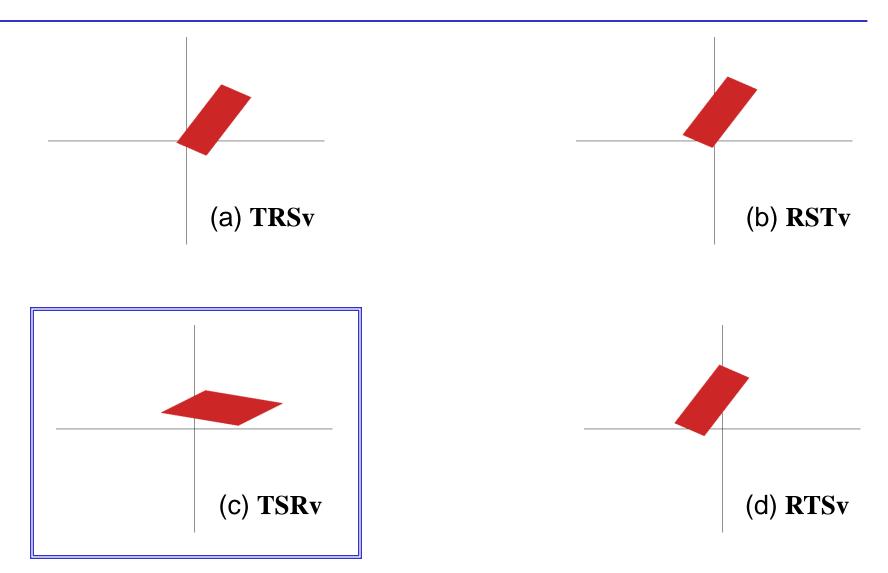
The same transformation is applied to many vertices,

- the matrix $M = M_3 M_2 M_1$ can be precomputed
- \bullet the computational cost of M can be ignored compared to the cost of computing $\mathbf{M}p$ for many vertices p

Exercise: Composing Transformations

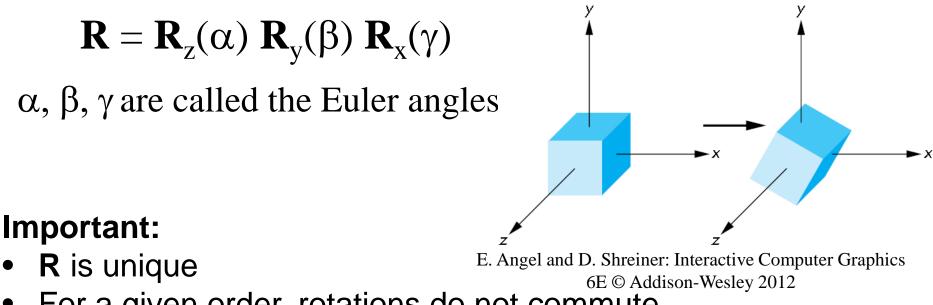


Exercise: Composing Transformations



General Rotation About the Origin

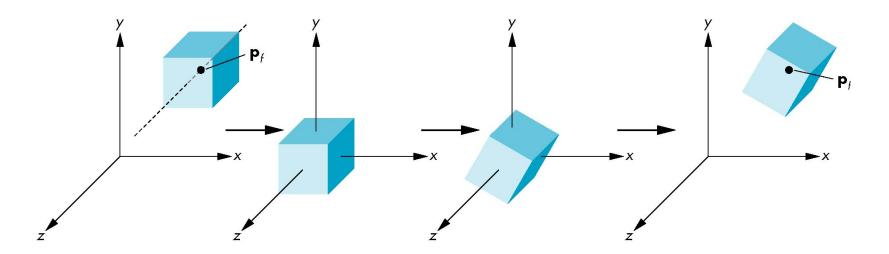
A general rotation about the origin can be decomposed into successive of rotations about the *x*, *y*, and *z* axes



- For a given order, rotations do not commute
- We can use rotations in another order but with different angles

Rotation About a Fixed Point Other than the Origin

- Move fixed point to origin
- Rotate around the origin
- Move fixed point back



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Instancing

How do we describe multiple object in a scene?

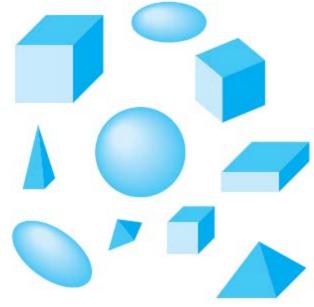
Intuitive solution:

Specify the vertices for each object

A better solution:

Specify a set of simple objects with

- a convenient size,
- a convenient location,
- a convenient orientation



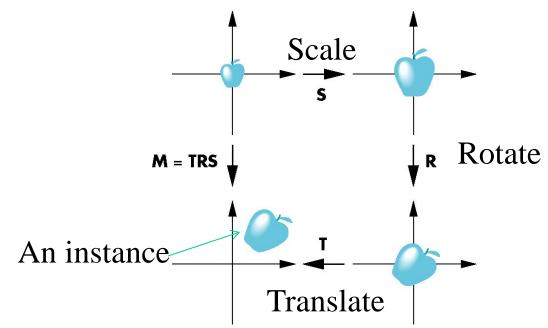
E. Angel and D. Shreiner

Instancing

In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

An occurrence of this object is an **instance** of the object class

We apply an *instance transformation* to its vertices to

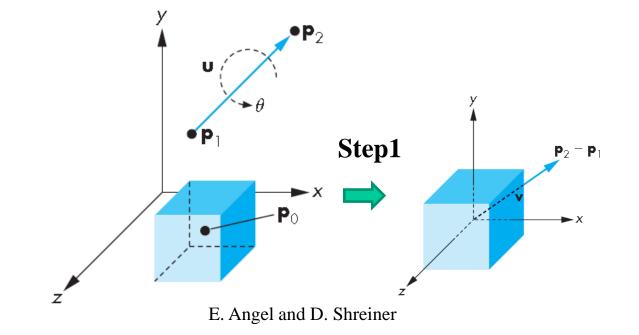


E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Rotation about An Arbitrary Vector

How do we achieve a rotation θ about an arbitrary vector?

Step 1: move the fixed point to the origin $M_1 = T(-p_0)$

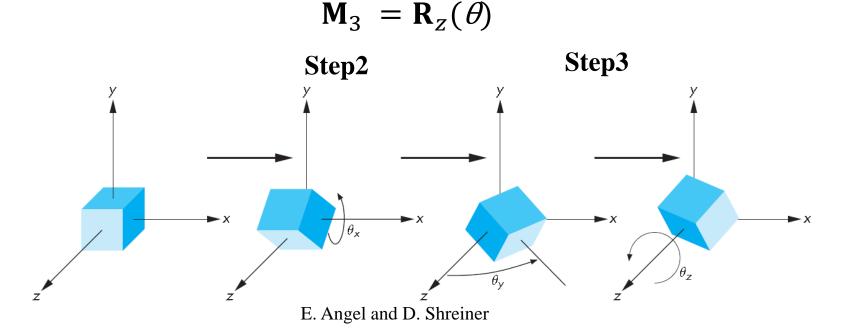


General Rotation about An Arbitrary Vector

Step 2: align the arbitrary vector $\mathbf{v} = \frac{\mathbf{p}_2 - \mathbf{p}_1}{|\mathbf{p}_2 - \mathbf{p}_1|}$ with the z-axis by two rotations about the x-axis and y-axis with θ_x and θ_y , respectively

$$\mathbf{M}_2 = \mathbf{R}_y (\theta_y) \mathbf{R}_x (\theta_x)$$

Step 3: rotate by θ about the z-axis



General Rotation about An Arbitrary Vector

Step 4: undo the two rotations for aligning z-axis

$$\mathbf{M}_4 = \mathbf{R}_x (-\theta_x) \mathbf{R}_y (-\theta_y)$$

Step 5: move the fixed point back

$$\mathbf{M}_5 = \mathbf{T}(\mathbf{p}_0)$$

The overall transformation matrix is

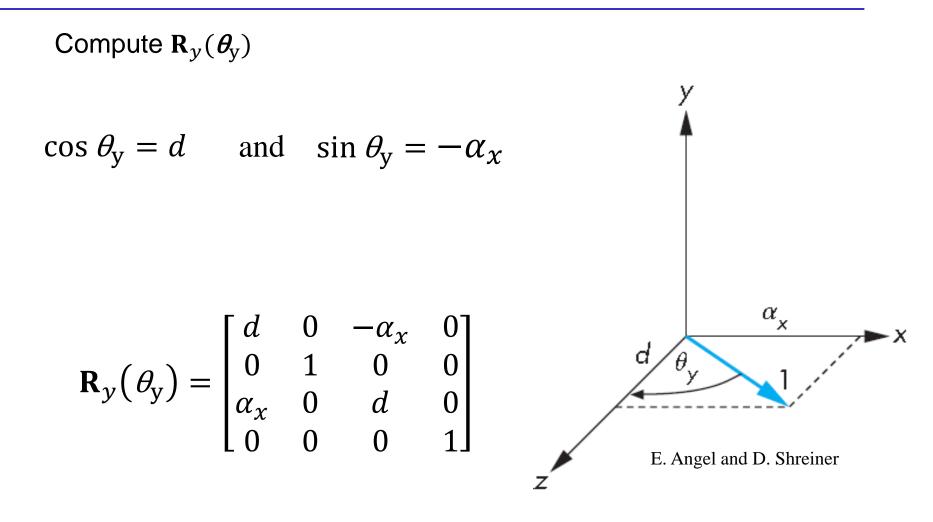
$$\mathbf{M} = \mathbf{M}_5 \mathbf{M}_4 \mathbf{M}_3 \ \mathbf{M}_2 \ \mathbf{M}_1$$

How to Determine θ_x and θ_y

d

Let
$$\mathbf{v} = \begin{bmatrix} \alpha_x & \alpha_y & \alpha_z \end{bmatrix}^T$$
 and $\alpha_x^2 + \alpha_y^2 + \alpha_z^2 = 1$
Compute $\mathbf{R}_x(\theta_x)$
 $\cos \theta_x = \frac{\alpha_z}{d}$ and $\sin \theta_x = \frac{\alpha_y}{d}$
 $\mathbf{R}_x(\theta_x) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & \frac{\alpha_z}{d} & -\frac{\alpha_y}{d} & 0\\ 0 & \frac{\alpha_y}{d} & \frac{\alpha_z}{d} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$
is the projection of \mathbf{v} on the y-z plane
 $d = \sqrt{\alpha_y^2 + \alpha_z^2}$
E. Angel and D. Shreiner

How to Determine θ_x and θ_y



An Example

Problem: rotate an object by 45 degrees about the line passing through the origin and the point (1,2,3)

7

Step1: Normalize the vector for rotation

$$\mathbf{p} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \mathbf{v} = \frac{\mathbf{p}}{|\mathbf{p}|} = \begin{bmatrix} \frac{1}{\sqrt{14}}\\\frac{2}{\sqrt{14}}\\\frac{3}{\sqrt{14}}\\0 \end{bmatrix} \qquad \qquad \mathbf{y}$$

An Example (Cont'd)

$$\alpha_x = \frac{1}{\sqrt{14}}, \, \alpha_y = \frac{2}{\sqrt{14}}, \, \alpha_z = \frac{3}{\sqrt{14}},$$

Step2: rotate about the x-axis about θ_x

Calculate the angle θ_x

$$\begin{array}{c} & & \\ \alpha_{z}, \\ & \\ \alpha_{y} \\ \theta_{x} \\ \theta_{x} \\ z \end{array} \begin{pmatrix} (\alpha_{x}, \alpha_{y}, \alpha_{z}) \\ 0 \\ \theta_{x} \\ \theta_{x} \\ \theta_{x} \\ z \\ z \\ \end{array}$$

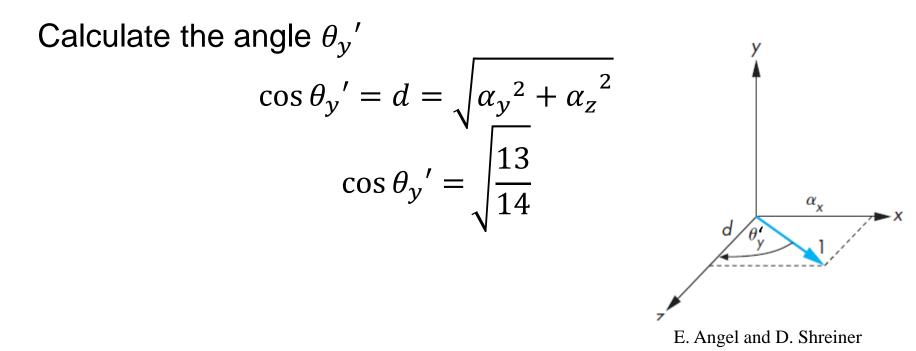
E. Angel and D. Shreiner

$$\cos \theta_x = \frac{\alpha_z}{d} = \frac{\alpha_z}{\sqrt{\alpha_y^2 + \alpha_z^2}}$$
$$\cos \theta_x = \frac{\alpha_z}{d} = \frac{3}{\sqrt{13}}$$

An Example (Cont'd)

$$\alpha_x = \frac{1}{\sqrt{14}}, \, \alpha_y = \frac{2}{\sqrt{14}}, \, \alpha_z = \frac{3}{\sqrt{14}}$$

Step3: rotate about the y-axis about $\theta_y = -\theta_y'$



An Example (Cont'd)

Step4: rotate about the z-axis about 45 degrees

Step5: rotate about the y-axis about $-\theta_y$

Step6: rotate about the x-axis about $-\theta_{x}$

$$\begin{split} \mathbf{R} &= \mathbf{R}_{x} \left(-\cos^{-1} \frac{3}{\sqrt{13}} \right) \mathbf{R}_{y} \left(\cos^{-1} \sqrt{\frac{13}{14}} \right) \mathbf{R}_{z} (45) \mathbf{R}_{y} \left(-\cos^{-1} \sqrt{\frac{13}{14}} \right) \\ &\mathbf{R}_{x} \left(\cos^{-1} \frac{3}{\sqrt{13}} \right) \\ &= \begin{bmatrix} \frac{2+13\sqrt{2}}{28} & \frac{2-\sqrt{2}-3\sqrt{7}}{14} & \frac{6-3\sqrt{2}+4\sqrt{7}}{28} & 0 \\ \frac{2-\sqrt{2}+3\sqrt{7}}{14} & \frac{4+5\sqrt{2}}{14} & \frac{6-3\sqrt{2}-\sqrt{7}}{14} & 0 \\ \frac{6-3\sqrt{2}-4\sqrt{7}}{28} & \frac{6-3\sqrt{2}+\sqrt{7}}{14} & \frac{18+5\sqrt{2}}{28} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \end{split}$$