
Three Main Themes of Computer Graphics

Modeling
• How do we represent (or model) 3-D objects?
• How do we construct models for specific objects?

Animation
• How do we represent the motion of objects?
• How do we give animators control of this motion?

Rendering
• How do we simulate the formation of images?
• How do we simulate the real-world behavior of light?

Modeling

How do we represent objects/environments?
• shape — the geometry of the object
• appearance — emission, reflection, and transmission of light

How do we construct these models?
• manual description (e.g., write down a formula)
• interactive manipulation
• procedurally — write a generating program (e.g., fractals)
• scan a real object

– laser scanners,
– computer vision, …

Animation

How do we represent the motion of objects?
• positions, view angles, etc. as functions of time

How do we control/specify this motion?
• generate poses by hand
• behavioral simulation
• physical simulation
• motion capture

Rendering

How do we simulate the formation of images?
• incoming light is focused by a lens
• light energy “exposes” a light-sensitive “film”
• represent images as discrete 2-D arrays of pixels I(x,y)
• need suitable representation of a camera

How do we simulate the behavior of light?
• consider light as photons (light particles)
• trace straight-line motion of photons
• must model interactions when light hits surfaces

– refraction, reflection, etc.

Image Formation at a Glance

Illumination Reflection

Absorption

Exposure

This is light transport.

Illumination is generated at light
sources, propagates thru world.

Interacts with objects in scene.

Image Formation

Elements of image formation:
• Illumination sources
• Objects
• Viewer (e.g., camera and eye)
• Attributes of materials

How can we design graphics hardware and software to mimic
the image formation process?

Image Formation

Modeling the flow of light
• Light has a dual nature
• Interaction with surface
• Composition of colors

Human perception
• Cone and rods

Simple camera
• Pinhole camera
• Camera with refractive lenses

Raster image representation
• Each image is represented by a rectangular grid of pixels

storing color values

Image Compositing

Introduce a new alpha channel in addition to RGB channels
• the α value of a pixel indicates its transparency

– if α=0, pixel is totally transparent
– if α=1, pixel is totally opaque

Given images A & B, we can compute C = A over B

• if we pre-multiply α values, this simplifies to

𝑃 =

𝑟𝑝
𝑔𝑝
𝑏𝑝
𝛼𝑝

⟹ 𝑃𝑃 =

𝛼𝑝𝑟𝑝
𝛼𝑝𝑔𝑝
𝛼𝑝𝑏𝑝
𝛼𝑝

𝐶𝑟𝑟𝑟 = 𝛼 𝐴𝐴𝑟𝑟𝑟 + (1 − 𝛼 𝐴)𝛼 𝐵𝐵𝑟𝑟𝑟

𝐶𝐶 = 𝐴𝐴 + (1 − 𝛼𝐴)𝐵𝐵

Aα
Bα

Pipeline Architecture of A Graphics System

All steps can be implemented in hardware on the graphics card
• Vertex processing

• Geometrical transformation
• Color transformations

• Primitive assembly
• Vertices must be collected into geometric objects before clipping and

rasterization
• Clipping
• Rasterization

• produces a set of fragments for each object
• Fragments are “potential pixels” in frame buffer with color and depth

• Fragment processing
• Determine colors

Introduction to OpenGL

OpenGL is an Application Programmer Interface (API) and a
standard graphics library for 2-D & 3-D drawing

• maps fairly directly to graphics hardware
• doesn’t address windows or input events (we’ll use GLUT)
• platform-independent

OpenGL 3.1 Totally shader-based
• Each application must provide both a vertex and a fragment

shader

OpenGL 4.1 and 4.2
• Add geometry shaders and tessellator

OpenGL Libraries

OpenGL core library

• Available when you install the graphics driver

OpenGL Utility Toolkit (GLUT/FreeGLUT)

• Provides functionality for all window systems

OpenGL Extension Libraries

• Links with window system

• OpenGL Extension Wrangler Library (GLEW)

Shader-based OpenGL

• Vertex shading stage: receiving and process primitives
separately

• E.g., specifying the colors and positions

• Tessellation shading stage: specifying a patch, i.e., an ordered
list of vertices and generating a mesh of primitives

• Geometry shading stage: enabling multivertex access, changing
primitive type

• Fragment shading stage: processing color and depth

GLSL

OpenGL Shading Language

Like a complete C program

Code sent to shaders as source code

Entry point is the main function main()

Need to compile, link and get information to shaders

Type Qualifier

Define and modify the behavior of variables

• Storage qualifiers: where the data come from
• const: read-only, must be initialized when declared
• in: vertex attributes or from the previous stage
• out: output from the shader
• uniform: a global variable shared between all the shader

stages
• buffer: share buffer with application (r/w)

• Layout qualifiers: the storage location

• Invariant/precise qualifiers: enforcing the reproducibility

Copy in/out
data

Vertex Shader
Basic task: Sending vertices positions to the rasterizer

Advanced tasks:
• Transformation

– Projection
• Moving vertices

– Morphing
– Wave motion
– Fractals

• Processing color

A Simple Vertex Shader: triangles.vert
(Shreiner et al)

#version 430 core

in vec4 vPosition;

void main()

{

 gl_Position = vPosition;

}

Global variable, copied from the application to
the shader

A built-in variable, passing data to the rasterizer

Specify it is an input to the shader

Simple Fragment Program

#version 400

out vec4 fColor;

void main(void)

{

 fColor = vec4(1.0, 0.0, 0.0, 1.0);

}

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Primitives

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_POINTS
GL_LINES

GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES

Polylines

Polygon Issues

OpenGL only displays triangles
• Simple: edges cannot cross, i.e., only meet at the end points
• Convex: All points on line segment between two points in a

polygon are also in the polygon
• Flat: all vertices are in the same plane

Application program must tessellate a polygon into
triangles (triangulation)

nonsimple polygon nonconvex polygon

OpenGL Camera

OpenGL places a camera at the origin in object space pointing in
the negative z direction

The default viewing volume is a box centered

at the origin with sides of length 2

E. Angel and D. Shreiner:

z=0

-1 1

OpenGL coordinates

-1

1

(0,0) x
y

Graphical Input

Devices can be described either by
• Physical properties

– Mouse
– Keyboard
– Trackball

• Logical Properties
– What is returned to program via API

Modes
• How and when input is obtained

– Request mode, e.g., keyboard input
• Input provided to program only when user triggers the device
• Application and input cannot work at the same time

– Event mode, e.g., mouse clicking
• Each trigger generates an event whose measure is put in an event

queue examined by the user program

Geometric Objects and Transformations

Described by a minimum set of primitives including
• Points

–Associated with location
–No size & shape

• Scalars
–have no geometric properties

• Vectors,
– a quantity with two attributes: direction and magnitude
– No position information

Operations allowed between points and vectors
• Point-point subtraction yields a vector
• Point-vector addition yields a new point

Spaces

(Linear) vector space: scalars and vectors
• Mathematical system for manipulating vectors
• Operations including scalar-vector multiplication and vector-

vector addition

Affine space: vector space + points
• Operations including vector-vector addition, scalar-vector

multiplication, scalar-scalar operations, point-vector addition,
point-point addition, and scalar-point multiplication

Euclidean space: vector space + distance
• Operations including vector-vector addition, scalar-vector

multiplication, scalar-scalar operations, and inner (dot)
products

Dimension, Basis, and Representation

Dimension of the space: the maximum number of
linearly independent vectors

In an n-dimensional space, any set of n linearly
independent vectors form a basis for the space

Given a basis v1, v2,…., vn, any vector v can be written as

 v=α1v1+ α2v2 +….+αnvn

where the {αi} are unique and form the representation of
the vector

Affine Spaces

Point + a vector space

Operations
• Vector-vector addition
• Scalar-vector multiplication
• Scalar-scalar operations
• Point-vector addition
• Point-point addition
• Scalar-Point multiplication Affine sum

The parametric form of line
• P(α)=P0 + α d
• Set of all points that pass through P0 in the direction of the

vector d
• If α >= 0, then P(α) is the ray leaving P0 in the direction d

Line segments

If we use two points to define v, then
𝑃(𝜶) = 𝑄 + 𝜶𝑣 = 𝑄 + 𝜶 (𝑅 − 𝑄) = 𝜶𝑅 + (1 − 𝜶)𝑄

For 0 ≤ 𝛼 ≤ 1 we get all the points on the line

segment joining R and Q

Lines and Rays

Planes

A plane can be defined by three non-collinear points

A plane can be defined by a point and two vectors

𝑇 𝛼, 𝛽 = 𝛽 𝛼𝛼 + 1 − 𝛼 𝑄 + 1 − 𝛽 R, 0 ≤ 𝛼, 𝛽 ≤ 1

𝑇(𝛼′, 𝛽′) = 𝑃 + 𝛼′𝑢 + 𝛽′𝑣 Parametric form of planes

Planes

Every plane has a vector 𝑛 normal (perpendicular) to it

A plane can be represented by its point-normal form

u

v
𝑃

(𝑇 − 𝑃) ∙ 𝑛 = 0

Triangles

A triangle can be defined by an affine sum of three vertices

𝑇(𝛼, 𝛽, 𝛾𝛾) = 𝛼𝑃 + 𝛽 𝑄 + 𝛾 𝑅 where 0 ≤ 𝛼 , 𝛽 , 𝛾 ≤ 1
𝛼 + 𝛽 + 𝛾 = 1

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate Systems

Consider a basis v1, v2,…., vn of ℛ𝒏

A vector in ℛ𝒏 is written 𝑣 = 𝜶1𝑣1 + 𝜶2𝑣2 + ⋯+ 𝜶𝑛𝑣𝑛

The list of scalars {𝜶1, 𝜶2, … . 𝜶𝑛} is the representation
of v with respect to the given basis

We can write the representation as a row or column
array of scalars

𝒂 = [𝜶1𝜶2⋯ 𝜶𝑛]𝑇 =





















α

α
α

n

2

1

.

Frame of Reference

A coordinate system is insufficient to represent points

Need a frame of reference to relate points and objects to our
physical world.

Adding a reference point (origin) to a coordinate system

 Frame defined in affine space
• Frames used in graphics

– World frame
– Camera frame
– Image frame

E. Angel and D. Shriener: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Representation in a Frame

Frame determined by (P0, v1, v2, v3)

Within this frame, every vector can be written as

 v=α1v1+ α2v2 +….+αnvn

Every point can be written as

 P = P0 + β1v1+ β2v2 +….+βnvn

Representation in a Frame- Homogeneous
Coordinates

Frame determined by (P0, v1, v2, v3)

Define 0•P = 0 and 1•P =P, then

• every vector can be written as

v=α1v1+ α2v2 +α3v3 = [α1 α2 α3 0]
 [v1 v2 v3 P0]

T

• every point can be written as

P = P0 + β1v1+ β2v2 +β3v3= [β1 β2 β3 1]
 [v1 v2 v3 P0]

T

Thus we obtain the four-dimensional homogeneous coordinate
representation

v = [α1 α2 α3 0]
 T

p = [β1 β2 β3 1]
 T

Representing One Frame in Terms of the
Other

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3
Q0 = γ41v1+γ42v2+γ43v3 +P0

defining a 4 x 4 matrix



















1γγγ
0γγγ
0γγγ
0γγγ

=

434241

333231

232221

131211

M 𝐔 Q0 = 𝐕 𝑃0 M𝑇

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Changing Representations

Any point or vector has a representation in a frame

a=[α1 α2 α3 α4] in the first frame
b=[β1 β2 β3 β4] in the second frame

where α4 = β4 = 1 for points and α4 = β4 = 0 for vectors

We can change the representation from one frame to the
other as

The matrix M is 4 x 4 and specifies an affine transformation in
homogeneous coordinates

a=MTb and b=(MT)-1a

Affine Transformations

Line preserving

Characteristic of many physically important transformations
• Translation
• Rotation
• Scaling
• Shearing

General rotation about the origin

General rotation about an arbitrary vector



















=

1000
d100
d010
d001

z

y

x

T


















=

1000
000
000
000

z

y

x

s
s

s

S
















 θ

=

1000
0100
0010
00cot 1

H

Rotation

















 −

=

1000
0100
00 cossin
00sin cos

)(
αα
αα

αZR



















=

1000
0 cossin 0
0sin - cos0
0001

)(
γγ
γγ

γxR



















=

1000
0 cos0sin -
0010
0sin 0 cos

)(
ββ

ββ

βyR

E. Angel and D. Shreiner: Interactive Computer Graphics
6E © Addison-Wesley 2012

General Rotation About the Origin

A general rotation about the origin can be decomposed into
successive of rotations about the x, y, and z axes

R = Rz(α) Ry(β) Rx(γ)
α, β, γ are called the Euler angles

Important:
• R is unique
• For a given order, rotations do not commute
• We can use rotations in another order but with different angles

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rotation About a Fixed Point Other than the Origin

• Move fixed point to origin

• Rotate around the origin

• Move fixed point back

M = T(pf) R T(-pf)

General Rotation about An Arbitrary Vector

How do we achieve a rotation θ about an arbitrary vector?
Step 1: move the fixed point to the origin 𝐌1 = 𝐓(−𝐩0)
Step 2: align the arbitrary vector v= 𝐩2−𝐩1

𝐩2−𝐩1
 with the z-axis by two

rotations about the x-axis and y-axis with θx and θy, respectively

Step 3: rotate by q about the z-axis

Step 4: undo the two rotations for aligning z-axis

Step 5: move the fixed point back

𝐌2 = 𝐑𝑦 (θy)𝐑𝑥(θx)

𝐌3 = 𝐑𝑧(θ)

𝐌4 = 𝐑𝑥 (−θx)𝐑𝑦(−θy)

𝐌5 = 𝐓(𝐩0)

Two Important Transformations in OpenGL

Object (or model) coordinates

World coordinates

Eye (or camera) coordinates

Clip coordinates

Normalized device coordinates

Window (or screen) coordinates

Projection
transformation

Model-view transformation

Objective: construct a new frame with
• the origin at the eye point,
• The view plane normal (vpn) as one

coordinate direction
• Two other orthogonal directions as the other

two coordinate directions

E. Angel and D. Shreiner

Model View Transformation

at point – the point (e.g., the
object center) the camera looks at

eye point – camera specified in
the object frame

vpn

LookAt(eye, at, up)

𝐌 =

−𝑢𝑥 −𝑢𝑦 −𝑢𝑧 −𝐮 ∙ 𝐯𝐯𝐯
𝑣𝑥 𝑣𝑦 𝑣𝑧 𝐯 ∙ 𝐯𝐯𝐯
−𝑛𝑥 −𝑛𝑦 −𝑛𝑧 −𝐧 ∙ 𝐯𝐯𝐯

0 0 0 1

E. Angel and D. Shreiner

Three Basic Elements in Viewing

One or more objects

A viewer with a projection surface
• Planar geometric projections
• Nonplanar projections are needed for

applications such as map construction

Projectors that go from the object(s) to
the projection surface

• Perspective projection: projectors
converge at a center of projection

• Parallel projection: projectors are parallel

E. Angel and D. Shreiner

Parallel Projection

The default projection is
orthogonal (orthographic)
projection

For points within the view volume

In homogeneous coordinates

xp = x
yp = y
zp = 0

pp = Morthp



















=

1000
0000
0010
0001

orthM

For general parallel projection

P = Morth STH(θ,φ)

Perspective Projection

Points project to points

Lines project to lines

Planes project to the whole or half image
• A plane may only has half of its area in the projection side

Scaling and foreshortening

Angles are not preserved
• Parallel lines may be not projected to parallel lines unless they

are parallel to the image plane

Degenerate cases
• Line through focal point projects to a point.
• Plane through focal point projects to line

Simple Perspective with OpenGL



















−
−
−

=



















−

=





































−

==

1
1
/
/

10100
0100
0010
0001

zy
zx

z
z
y
x

z
y
x

PQ M

A point P (x, y ,z, 1) is projected to a new point Q

E. Angel and D. Shreiner:

Simple Perspective with OpenGL

Consider a simple perspective with
• the COP at the origin,
• the near clipping plane at z = -1, and
• a 90 degree field of view determined by the planes x

= ±z, y = ±z
• Perspective projection matrix is

Z=-near 

















=

0/100
0100
0010
0001

d

M where d = -1

Perspective Projection and Normalization



















−

=

0100
βα00
0010
0001

N

A point P=(x, y, z, 1) is project to a new point Q on the
projection plane as

The projection can be achieved by view normalization
and an orthographic projection

𝑄 = 𝐌orth𝐍P

OpenGL Perspective

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by
a scaling to get the normalized perspective volume.

The final perspective matrix

𝐌𝒑 = 𝐍𝐍𝐍 =

2𝑛𝑛𝑛𝑛
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0

𝑙𝑙𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟𝑟 − 𝑙𝑙𝑙𝑙 0

0
2𝑛𝑛𝑛𝑛

𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡
𝑡𝑡𝑡 − 𝑏𝑏𝑏𝑏𝑏𝑏 0

0 0
𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

2𝑛𝑛𝑛𝑛 ∗ 𝑓𝑓𝑓
𝑛𝑛𝑛𝑛 − 𝑓𝑓𝑓

0 0 −1 0

A point P=(x, y, z, 1) is project to a new point Q on the
projection plane as

𝑄 = 𝐌orth𝐌𝒑P

	Three Main Themes of Computer Graphics
	Modeling
	Animation
	Rendering
	Image Formation at a Glance
	Image Formation
	Image Formation
	Image Compositing
	Pipeline Architecture of A Graphics System�
	Introduction to OpenGL
	OpenGL Libraries
	Shader-based OpenGL
	GLSL
	Type Qualifier
	Vertex Shader
	A Simple Vertex Shader: triangles.vert (Shreiner et al)
	Simple Fragment Program
	OpenGL Primitives
	Polygon Issues
	OpenGL Camera
	Graphical Input
	Geometric Objects and Transformations
	Spaces
	Dimension, Basis, and Representation
	Affine Spaces
	Lines and Rays
	Planes
	Planes
	Triangles
	Coordinate Systems
	Frame of Reference
	Representation in a Frame
	Representation in a Frame- Homogeneous Coordinates
	Representing One Frame in Terms of the Other
	Changing Representations
	Affine Transformations
	Rotation
	General Rotation About the Origin
	Rotation About a Fixed Point Other than the Origin
	General Rotation about An Arbitrary Vector
	Two Important Transformations in OpenGL
	Model View Transformation
	LookAt(eye, at, up)
	Three Basic Elements in Viewing
	Parallel Projection
	Perspective Projection
	Simple Perspective with OpenGL
	Simple Perspective with OpenGL
	Perspective Projection and Normalization
	OpenGL Perspective

