Three Main Themes of Computer Graphics

Modeling
 How do we represent (or model) 3-D objects?
* How do we construct models for specific objects?

Animation
* How do we represent the motion of objects?
 How do we give animators control of this motion?

Rendering
 How do we simulate the formation of images?
* How do we simulate the real-world behavior of light?

Modeling

How do we represent objects/environments?
» shape — the geometry of the object
e appearance — emission, reflection, and transmission of light

How do we construct these models?
 manual description (e.g., write down a formula)
* interactive manipulation
» procedurally — write a generating program (e.g., fractals)
e scan a real object
—laser scanners,
—computer vision, ...

Animation

How do we represent the motion of objects?
 positions, view angles, etc. as functions of time

How do we control/specify this motion?
* generate poses by hand
» behavioral simulation
 physical simulation
e motion capture

Rendering

How do we simulate the formation of images?
* incoming light is focused by a lens
* light energy “exposes” a light-sensitive “film”
» represent images as discrete 2-D arrays of pixels 1(X,y)
* need suitable representation of a camera

How do we simulate the behavior of light?
 consider light as photons (light particles)
* trace straight-line motion of photons
* must model interactions when light hits surfaces
—refraction, reflection, etc.

Image Formation at a Glance

Exposure

Miken

lection Hlumination

This is light transport.

lllumination is generated at light
sources, propagates thru world.

Interacts with objects in scene.

Absorption

Image Formation

Elements of image formation:
e lllumination sources

* Objects

* Viewer (e.g., camera and eye)
 Attributes of materials

How can we design graphics hardware and software to mimic
the image formation process?

Image Formation

Modeling the flow of light
 Light has a dual nature
* Interaction with surface
o Composition of colors

Human perception
* Cone and rods

Simple camera
* Pinhole camera
 Camera with refractive lenses

Raster image representation

THE ELECTRO MAGNETIC SPECTRUM

Wavelength
[metres)
Radio Microwave Infrared Visible Ultraviclet ¥-Ray Gamma Ray
] |] 1] 1 1
T I I 1 I T T R
103 102 105 b 108 1010 1012
Frequency
(Hz)
104 108 1012 1 1013 1016 1018 1020

« Each image is represented by a rectangular grid of pixels

storing color values

Image Compositing

Introduce a new alpha channel in addition to RGB channels
 the o value of a pixel indicates its transparency
—if a=0, pixel is totally transparent

—if =1, pixel is totally opaque

Ty QT T
9p , ApYp

P = b — P’ = a.b
p pPp
Ay | | Ay

Given images A & B, we can compute C=Aover B
Crgh = A glrgp + (1 —a g)a gBrgp
« if we pre-multiply o values, this simplifies to
C'=A"+(1—ay)B’

Pipeline Architecture of A Graphics System

Vartic Fmgrnnant

Vartex » i pper and 4
MCessar

—— = Pixals
Procassor Primitive Assambler

= Hosterizer =

All steps can be implemented in hardware on the graphics card
 Vertex processing

» Geometrical transformation

» Color transformations
 Primitive assembly

» Vertices must be collected into geometric objects before clipping and
rasterization

o Clipping
» Rasterization

e produces a set of fragments for each object

 Fragments are “potential pixels” in frame buffer with color and depth
« Fragment processing

» Determine colors

Introduction to OpenGL

OpenGL is an Application Programmer Interface (API) and a
standard graphics library for 2-D & 3-D drawing

» maps fairly directly to graphics hardware
e doesn’t address windows or input events (we’ll use GLUT)

* platform-independent

OpenGL 3.1 Totally shader-based
« Each application must provide both a vertex and a fragment
shader

OpenGL 4.1 and 4.2
» Add geometry shaders and tessellator

OpenGL Libraries

OpenGL core library

« Available when you install the graphics driver
OpenGL Utility Toolkit (GLUT/FreeGLUT)

* Provides functionality for all window systems
OpenGL Extension Libraries

e Links with window system

 OpenGL Extension Wrangler Library (GLEW)

Shader-based OpenGL

. [Vertex shading stage: receiving and process primitives
separately

 E.g., specifying the colors and positions

» Tessellation shading stage: specifying a patch, i.e., an ordered
list of vertices and generating a mesh of primitives

 Geometry shading stage: enabling multivertex access, changing
primitive type

. [Fragment shading stage:/processing color and depth

GLSL

OpenGL Shading Language

Like a complete C program

Code sent to shaders as source code
Entry point is the main function main()

Need to compile, link and get information to shaders

Type Qualifier

Define and modify the behavior of variables

« Storage qualifiers: where the data come from

» const: read-only, must be initialized when declared :
- . . Copy in/out

* in: vertex attributes or from the previous stage q

e out: output from the shader ata

« uniform: a global variable shared between all the shader
stages

« Dbuffer: share buffer with application (r/w)
 Layout qualifiers: the storage location

* Invariant/precise qualifiers: enforcing the reproducibility

Vertex Shader

Basic task: Sending vertices positions to the rasterizer

Advanced tasks:

e Transformation
— Projection

* Moving vertices
—Morphing
—Wave motion
— Fractals

* Processing color

A Simple Vertex Shader: triangles.vert
(Shreiner et al)

#version 430 core
Specify it Is an input to the shader

In vec4 vPosition:

Global variable, copied from the application to

void main() the shader

{

gl _Position = vPosition;

A built-in variable, passing data to the rasterizer

Simple Fragment Program

#versio/n400/ Specify this is an output to the application

out vec4 fColor;
void main(void)
{
fColor =vec4(1.0, 0.0, 0.0, 1.0);

}

OpenGL Primitives

Polylines
!

4 | ~N
GL_POINTS / \

GL_LINES

GL_LINE_STRIP GL_LINE_LOOP

N\ y

A A

N

GL_TRIANGLES

=

GL_TRIANGLE_FAN

GL_TRIANGLE_STRIP

- Y,

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygon Issues

OpenGL only displays triangles
« Simple: edges cannot cross, i.e., only meet at the end points

e Convex: All points on line segment between two points in a
polygon are also in the polygon

« Flat: all vertices are in the same plane

Application program must tessellate a polygon into

triangles (triangulation)
x nonconvex polygon

nonsimple polygon

OpenGL Camera

OpenGL places a camera at the origin in object spacepointing in
the negative z direction

The default viewing volume is a box centered

at the origin with sides of length 2 /%\

y
A
z=0 (left, bottom, near,
OpenGL coordinates
(x,, 0) :I
Z/ 1 _______ y_ S — = — 1
] (0,0) "
(x, y, 2) E
E. Angel and D. Shreiner: :

(right, top, far)

Graphical Input

Devices can be described either by
» Physical properties
—Mouse
—Keyboard
— Trackball
 Logical Properties
—What is returned to program via API

Modes
« How and when input is obtained
—Request mode, e.qg., keyboard input
* Input provided to program only when user triggers the device
» Application and input cannot work at the same time
—Event mode, e.g., mouse clicking

e Each trigger generates an event whose measure is put in an event
gueue examined by the user program

Geometric Objects and Transformations

Described by a minimum set of primitives including

e Points

—Associated with location

—No size & shape
e Scalars

—have no geometric properties
e \ectors,

—a quantity with two attributes: direction and magnitude
—No position information

Operations allowed between points and vectors
* Point-point subtraction yields a vector
» Point-vector addition yields a new point

Spaces

(Linear) vector space: scalars and vectors
« Mathematical system for manipulating vectors

» Operations including scalar-vector multiplication and vector-
vector addition

Affine space: vector space + points

» Operations including vector-vector addition, scalar-vector
multiplication, scalar-scalar operations, point-vector addition,
point-point addition, and scalar-point multiplication

Euclidean space: vector space + distance

» Operations including vector-vector addition, scalar-vector
multiplication, scalar-scalar operations, and inner (dot)
products

Dimension, Basis, and Representation

Dimension of the space: the maximum number of
linearly independent vectors

In an n-dimensional space, any set of n linearly
Independent vectors form a basis for the space

Given a basis vy, V,,...., V,, any vector v can be written as
V=0,V + oLV, Fo. oV,

where the {a,;} are unique and form the representation of
the vector

Affine Spaces

Point + a vector space

Operations
» Vector-vector addition
» Scalar-vector multiplication
» Scalar-scalar operations
» Point-vector addition
* Point-point addition

 Scalar-Point multiplication Affine sum

Lines and Rays

The parametric form of line
* P(a)=P,+ a d

« Set of all points that pass through P, in the direction of the
vector d

e If a >= 0, then P(a) is the ray leaving P, in the direction d
Line segments ,p’ﬁ(a)
oa=1-
If we use two points to define v, then R
Ple) =Q+av=0 + a(R—0Q) =aR

For 0 < a < 1 we get all the points on the line

segment joining R and Q =10

Planes

A plane can be defined by three non-collinear points

T(a,B)=PBlaP+ (1 —-—a)Q]+ (1 —-B)R,0<a,f <1

A plane can be defined by a point and two vectors

T(a,B)=P+du+p'v Parametric form of planes

R

t,,
,,’/ T(af ﬁ)

P S}

Planes

Every plane has a vector n normal (perpendicular) to it

A plane can be represented by its point-normal form

i

(T—P) -n=0

Triangles

A triangle can be defined by an affine sum of three vertices

S{o) Q

T(a,8,Y)=aP+B Q+y R where 0=a ,f .,y =1

Coordinate Systems

Consider a basis v, v,,...., v, of R"
A vector in R" is written v = a,v, + a,v, + -+ a,v,

The list of scalars {a,, a,,a,} IS the representation
of v with respect to the given basis

We can write the representation as a row or column
array of scalars -

T o
a=[a1a2°"an] = |

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Frame of Reference

A coordinate system is insufficient to represent points

Need a frame of reference to relate points and objects to our
physical world.

Adding a reference point (origin) to a coordinate system

mmmmmm) Frame defined in affine space

* Frames used in graphics 4
—World frame

—Camera frame
—Image frame

v

E. Angel and D. Shriener: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Representation in a Frame

Frame determined by (P, Vq, V,, V3)

Within this frame, every vector can be written as
V=Vt oLV, etV

Every point can be written as

P =P+ Bvit By, +.... 4BV,

Representation in a Frame- Homogeneous
Coordinates

Frame determined by (P, Vq, Vs, V3)
Define 0P =0 and 1+P =P, then

e every vector can be written as

_ _ T
V=a,V;t ALV, toVs = [og oy 03 0] [y v, V5 Py

e every point can be written as

P =Py+ Byvit BoVy +B3Vs=[By B, B3 1] [V V, V3 Pyl

Thus we obtain the four-dimensional homogeneous coordinate
representation

T

v=[o,0,0;0] T

P=[B:B,Bs1] T

Representing One Frame in Terms of the

Other

Up = Y11V Y10V tY13V3
Uy = YoV TY20oVo Y033
U3 = Y31V Y30V 1Y33V3

Qo= Ya1V1+YaoVotYasVs TPy

defining a 4 x 4 matrix

Vi Y2 Yz O
M — Yoo Y2 Y2 O
Ysi Y Y O

Y1 Yo Va 1_

=)

(U

Qo] = [V Po]M"

Changing Representations

Any point or vector has a representation in a frame

a=[o,; o, asay,]In the first frame
b=[B, B, B3P4]in the second frame

where o,=p,= 1 for points and o,=,= 0 for vectors

We can change the representation from one frame to the
other as

a=MTh and b=(MT")1a

The matrix M is 4 x 4 and specifies an affine transformation in
homogeneous coordinates

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Affine Transformations

Line preserving

Characteristic of many physically |mportant transformations

» Translation 11 g o ¢ s, 0 0 O 1 cot®
 Rotation 010 d |0 s, 0 0 _ 0 1
» Scaling T=|, o ; dy S = 0 0 s, 0 0 O
* Shearing 000 1 0 0 0 1 0 O

General rotation about the orlgm

General rotation about an arbitrary vector

o -, O O
R, O O O

Rotation

R.(y)=

R, (a)

1
0 cosy
0 siny
0

0

0

[COS &

Sin
0
0

0
-sin y
COS ¥

0

—SIn«
COS
0
0

R O O O

o O O

_, O O O

R,(8)=

o O — O

R O O O

General Rotation About the Origin

A general rotation about the origin can be decomposed Iinto
successive of rotations about the X, y, and z axes

Y

R = R,(a) Ry(B) Ry(¥) ” I

o, 3, v are called the Euler angles
Important: Z'/ Z/

" " E. Angel and D. Shreiner: Interactive Computer Graphics
[
R IS unlque 6E © Addison-Wesley 2012

e For a given order, rotations do not commute
* We can use rotations in another order but with different angles

Rotation About a Fixed Point Other than the Origin

* Move fixed point to origin
* Rotate around the origin

 Move fixed point back

-

BDYRE4

Z

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

General Rotation about An Arbitrary Vector

How do we achieve arotation 6 about an arbitrary vector?

Step 1: move the fixed point to the origin M, = T(—p,)

P2—P1
|p2—p1l
rotations about the x-axis and y-axis with 6, and 6,,, respectively

M, = Ry (Hy)Rx(‘gx)

Step 2: align the arbitrary vector v= with the z-axis by two

Step 3: rotate by q about the z-axis

M; =R,(6)
Step 4: undo the two rotations for aligning z-axis

M, =R, (—6,)R,(—86
Step 5: move the fixed point ba’ék(xRy (=)

Ms; = T(p,)

Two Important Transformations in OpenGL

Object (or model) coordinates

World coordinates

Eye (or camera) coordinates =
Clip coordinates

Normalized device coordinates

T

Window (or screen) coordinates

Model-view transformation

Projection
transformation

Model View Transformation

Objective: construct a new frame with at point — the point (e.g., the

the origin at the eye point, object center) the camera looks at
The view plane normal (vpn) as one 4
coordinate direction (at , at , at) A

x! L2

Two other orthogonal directions as the other
two coordinate directions (UPX.« up,, ”F’z) "

vpn o
Z

(eye , eye,, eye)
eye point — camera specified in
the object frame

y
X

E. Angel and D. Shreiner

LookAt(eye, at, up)

pr=ame —Uy —U, —U, —U-Vpn
n— vpn ‘ M — Uy vy, v, V-vpn
[vpn| ~|-ny —n, -n, —n-vpn
L Vgpxm 0 0 0 1
[Vyp X 1
nxamu

V —=
In x u|

Three Basic Elements in Viewing

One or more objects

A viewer with a projection surface
» Planar geometric projections Object
« Nonplanar projections are needed for

applications such as map construction Projector~_
Projectors that go from the object(s) to /jﬁ,/:?;”
the projection surface Zi
Z Projection plane

» Perspective projection: projectors
converge at a center of projection

 Parallel projection: projectors are parallel COF

E. Angel and D. Shreiner

Parallel Projection

The default projection is
orthogonal (orthographic)
projection

For points within the view volume g %o Yor Z,)
Xp =X X

Y, =Y /

Zp:0 Zz

g

(Xr Y, Z)
//'

-

E. Angel and D. Shreiner
In homogeneous coordinates

P, = M, P For general parallel projection
1 0 0 0] P = Monn STH(0,9)
0 1 00
I\/Iorth:
0 0 0 O
000 1

Perspective Projection

Points project to points

Lines project to lines

Planes project to the whole or half image - .
» A plane may only has half of its area in the projection S|de

Scaling and foreshortening

Angles are not preserved

» Parallel lines may be not projected to parallel lines unless they
are parallel to the image plane

Degenerate cases
* Line through focal point projects to a point.
» Plane through focal point projects to line

Simple Perspective with OpenGL

Apoint P (X, y,z, 1) is projected to a new point Q

1 0 0 O]x X | [=x/z]
O 1 0 O —v/z
O 0 1 0}z Z -1

_O 0 -1 O__l_ —-z] | 1 |

Simple Perspective with OpenGL

Consider a simple perspective with
 the COP at the origin,
* the near clipping plane at z=-1, and

» a 90 degree field of view determined by the planes X
=47,y =1z
 Perspective projection matrix is

1

0
0
0

0 O
1 0
0 1
0 1/d

where d = -1

(_]I _]r _.l)“\

z=-for

(1,1,-1)

Z=-near

X

E. Angel and D. Shreiner:

Perspective Projection and Normalization

The projection can be achieved by view normalization
and an orthographic projection

A point P=(X, Yy, z, 1) is project to a new point Q on the
projection plane as

Q = Myyu NP

o O O K

©O O L, O
Q

O ™ O O

OpenGL Perspective

How do we handle the asymmetric frustum?

Convert the frustum to a symmetric one by performing a shear followed by

a scaling to get the normalized perspective volume.

The final perspective matrix

0

2near * far

2near left +right
right — left right — left
0 2near bottom + top
M, = NSH = top — bottom top — bottom
near + far
0 0
near — far
0 0 -1

near — far
0

A point P=(X, y, z, 1) Is project to a new point Q on the

projection plane as

Q= MorthMpP

	Three Main Themes of Computer Graphics
	Modeling
	Animation
	Rendering
	Image Formation at a Glance
	Image Formation
	Image Formation
	Image Compositing
	Pipeline Architecture of A Graphics System�
	Introduction to OpenGL
	OpenGL Libraries
	Shader-based OpenGL
	GLSL
	Type Qualifier
	Vertex Shader
	A Simple Vertex Shader: triangles.vert (Shreiner et al)
	Simple Fragment Program
	OpenGL Primitives
	Polygon Issues
	OpenGL Camera
	Graphical Input
	Geometric Objects and Transformations
	Spaces
	Dimension, Basis, and Representation
	Affine Spaces
	Lines and Rays
	Planes
	Planes
	Triangles
	Coordinate Systems
	Frame of Reference
	Representation in a Frame
	Representation in a Frame- Homogeneous Coordinates
	Representing One Frame in Terms of the Other
	Changing Representations
	Affine Transformations
	Rotation
	General Rotation About the Origin
	Rotation About a Fixed Point Other than the Origin
	General Rotation about An Arbitrary Vector
	Two Important Transformations in OpenGL
	Model View Transformation
	LookAt(eye, at, up)
	Three Basic Elements in Viewing
	Parallel Projection
	Perspective Projection
	Simple Perspective with OpenGL
	Simple Perspective with OpenGL
	Perspective Projection and Normalization
	OpenGL Perspective

